177 research outputs found

    3D mesh processing using GAMer 2 to enable reaction-diffusion simulations in realistic cellular geometries

    Full text link
    Recent advances in electron microscopy have enabled the imaging of single cells in 3D at nanometer length scale resolutions. An uncharted frontier for in silico biology is the ability to simulate cellular processes using these observed geometries. Enabling such simulations requires watertight meshing of electron micrograph images into 3D volume meshes, which can then form the basis of computer simulations of such processes using numerical techniques such as the Finite Element Method. In this paper, we describe the use of our recently rewritten mesh processing software, GAMer 2, to bridge the gap between poorly conditioned meshes generated from segmented micrographs and boundary marked tetrahedral meshes which are compatible with simulation. We demonstrate the application of a workflow using GAMer 2 to a series of electron micrographs of neuronal dendrite morphology explored at three different length scales and show that the resulting meshes are suitable for finite element simulations. This work is an important step towards making physical simulations of biological processes in realistic geometries routine. Innovations in algorithms to reconstruct and simulate cellular length scale phenomena based on emerging structural data will enable realistic physical models and advance discovery at the interface of geometry and cellular processes. We posit that a new frontier at the intersection of computational technologies and single cell biology is now open.Comment: 39 pages, 14 figures. High resolution figures and supplemental movies available upon reques

    Making Laplacians commute

    Full text link
    In this paper, we construct multimodal spectral geometry by finding a pair of closest commuting operators (CCO) to a given pair of Laplacians. The CCOs are jointly diagonalizable and hence have the same eigenbasis. Our construction naturally extends classical data analysis tools based on spectral geometry, such as diffusion maps and spectral clustering. We provide several synthetic and real examples of applications in dimensionality reduction, shape analysis, and clustering, demonstrating that our method better captures the inherent structure of multi-modal data

    Adaptive Discrete Laplace Operator

    Get PDF
    International audienceDiffusion processes capture information about the geometry of an object such as its curvature, symmetries and particular points. The evolution of the diffusion is governed by the Laplace-Beltrami operator which presides to the diffusion on the manifold. In this paper, we define a new discrete adaptive Laplacian for digital objects, gener- alizing the operator defined on meshes. We study its eigenvalues and eigenvectors recovering interesting geometrical informations. We discuss its convergence towards the usual Laplacian operator especially on lat- tice of diamonds. We extend this definition to 3D shapes. Finally we use this Laplacian in classical but adaptive denoising of pictures preserving zones of interest like thin structures
    • …
    corecore