743 research outputs found

    On Nonrigid Shape Similarity and Correspondence

    Full text link
    An important operation in geometry processing is finding the correspondences between pairs of shapes. The Gromov-Hausdorff distance, a measure of dissimilarity between metric spaces, has been found to be highly useful for nonrigid shape comparison. Here, we explore the applicability of related shape similarity measures to the problem of shape correspondence, adopting spectral type distances. We propose to evaluate the spectral kernel distance, the spectral embedding distance and the novel spectral quasi-conformal distance, comparing the manifolds from different viewpoints. By matching the shapes in the spectral domain, important attributes of surface structure are being aligned. For the purpose of testing our ideas, we introduce a fully automatic framework for finding intrinsic correspondence between two shapes. The proposed method achieves state-of-the-art results on the Princeton isometric shape matching protocol applied, as usual, to the TOSCA and SCAPE benchmarks

    A Low-Dimensional Representation for Robust Partial Isometric Correspondences Computation

    Full text link
    Intrinsic isometric shape matching has become the standard approach for pose invariant correspondence estimation among deformable shapes. Most existing approaches assume global consistency, i.e., the metric structure of the whole manifold must not change significantly. While global isometric matching is well understood, only a few heuristic solutions are known for partial matching. Partial matching is particularly important for robustness to topological noise (incomplete data and contacts), which is a common problem in real-world 3D scanner data. In this paper, we introduce a new approach to partial, intrinsic isometric matching. Our method is based on the observation that isometries are fully determined by purely local information: a map of a single point and its tangent space fixes an isometry for both global and the partial maps. From this idea, we develop a new representation for partial isometric maps based on equivalence classes of correspondences between pairs of points and their tangent spaces. From this, we derive a local propagation algorithm that find such mappings efficiently. In contrast to previous heuristics based on RANSAC or expectation maximization, our method is based on a simple and sound theoretical model and fully deterministic. We apply our approach to register partial point clouds and compare it to the state-of-the-art methods, where we obtain significant improvements over global methods for real-world data and stronger guarantees than previous heuristic partial matching algorithms.Comment: 17 pages, 12 figure

    Geometric modeling of non-rigid 3D shapes : theory and application to object recognition.

    Get PDF
    One of the major goals of computer vision is the development of flexible and efficient methods for shape representation. This is true, especially for non-rigid 3D shapes where a great variety of shapes are produced as a result of deformations of a non-rigid object. Modeling these non-rigid shapes is a very challenging problem. Being able to analyze the properties of such shapes and describe their behavior is the key issue in research. Also, considering photometric features can play an important role in many shape analysis applications, such as shape matching and correspondence because it contains rich information about the visual appearance of real objects. This new information (contained in photometric features) and its important applications add another, new dimension to the problem\u27s difficulty. Two main approaches have been adopted in the literature for shape modeling for the matching and retrieval problem, local and global approaches. Local matching is performed between sparse points or regions of the shape, while the global shape approaches similarity is measured among entire models. These methods have an underlying assumption that shapes are rigidly transformed. And Most descriptors proposed so far are confined to shape, that is, they analyze only geometric and/or topological properties of 3D models. A shape descriptor or model should be isometry invariant, scale invariant, be able to capture the fine details of the shape, computationally efficient, and have many other good properties. A shape descriptor or model is needed. This shape descriptor should be: able to deal with the non-rigid shape deformation, able to handle the scale variation problem with less sensitivity to noise, able to match shapes related to the same class even if these shapes have missing parts, and able to encode both the photometric, and geometric information in one descriptor. This dissertation will address the problem of 3D non-rigid shape representation and textured 3D non-rigid shapes based on local features. Two approaches will be proposed for non-rigid shape matching and retrieval based on Heat Kernel (HK), and Scale-Invariant Heat Kernel (SI-HK) and one approach for modeling textured 3D non-rigid shapes based on scale-invariant Weighted Heat Kernel Signature (WHKS). For the first approach, the Laplace-Beltrami eigenfunctions is used to detect a small number of critical points on the shape surface. Then a shape descriptor is formed based on the heat kernels at the detected critical points for different scales. Sparse representation is used to reduce the dimensionality of the calculated descriptor. The proposed descriptor is used for classification via the Collaborative Representation-based Classification with a Regularized Least Square (CRC-RLS) algorithm. The experimental results have shown that the proposed descriptor can achieve state-of-the-art results on two benchmark data sets. For the second approach, an improved method to introduce scale-invariance has been also proposed to avoid noise-sensitive operations in the original transformation method. Then a new 3D shape descriptor is formed based on the histograms of the scale-invariant HK for a number of critical points on the shape at different time scales. A Collaborative Classification (CC) scheme is then employed for object classification. The experimental results have shown that the proposed descriptor can achieve high performance on the two benchmark data sets. An important observation from the experiments is that the proposed approach is more able to handle data under several distortion scenarios (noise, shot-noise, scale, and under missing parts) than the well-known approaches. For modeling textured 3D non-rigid shapes, this dissertation introduces, for the first time, a mathematical framework for the diffusion geometry on textured shapes. This dissertation presents an approach for shape matching and retrieval based on a weighted heat kernel signature. It shows how to include photometric information as a weight over the shape manifold, and it also propose a novel formulation for heat diffusion over weighted manifolds. Then this dissertation presents a new discretization method for the weighted heat kernel induced by the linear FEM weights. Finally, the weighted heat kernel signature is used as a shape descriptor. The proposed descriptor encodes both the photometric, and geometric information based on the solution of one equation. Finally, this dissertation proposes an approach for 3D face recognition based on the front contours of heat propagation over the face surface. The front contours are extracted automatically as heat is propagating starting from a detected set of landmarks. The propagation contours are used to successfully discriminate the various faces. The proposed approach is evaluated on the largest publicly available database of 3D facial images and successfully compared to the state-of-the-art approaches in the literature. This work can be extended to the problem of dense correspondence between non-rigid shapes. The proposed approaches with the properties of the Laplace-Beltrami eigenfunction can be utilized for 3D mesh segmentation. Another possible application of the proposed approach is the view point selection for 3D objects by selecting the most informative views that collectively provide the most descriptive presentation of the surface

    A Fast Modal Space Transform for Robust Nonrigid Shape Retrieval

    Get PDF
    Nonrigid or deformable 3D objects are common in many application domains. Retrieval of such objects in large databases based on shape similarity is still a challenging problem. In this paper, we take advantages of functional operators as characterizations of shape deformation, and further propose a framework to design novel shape signatures for encoding nonrigid geometries. Our approach constructs a context-aware integral kernel operator on a manifold, then applies modal analysis to map this operator into a low-frequency functional representation, called fast functional transform, and finally computes its spectrum as the shape signature. In a nutshell, our method is fast, isometry-invariant, discriminative, smooth and numerically stable with respect to multiple types of perturbations. Experimental results demonstrate that our new shape signature for nonrigid objects can outperform all methods participating in the nonrigid track of the SHREC’11 contest. It is also the second best performing method in the real human model track of SHREC’14.postprin

    Doctor of Philosophy

    Get PDF
    dissertationShape analysis is a well-established tool for processing surfaces. It is often a first step in performing tasks such as segmentation, symmetry detection, and finding correspondences between shapes. Shape analysis is traditionally employed on well-sampled surfaces where the geometry and topology is precisely known. When the form of the surface is that of a point cloud containing nonuniform sampling, noise, and incomplete measurements, traditional shape analysis methods perform poorly. Although one may first perform reconstruction on such a point cloud prior to performing shape analysis, if the geometry and topology is far from the true surface, then this can have an adverse impact on the subsequent analysis. Furthermore, for triangulated surfaces containing noise, thin sheets, and poorly shaped triangles, existing shape analysis methods can be highly unstable. This thesis explores methods of shape analysis applied directly to such defect-laden shapes. We first study the problem of surface reconstruction, in order to obtain a better understanding of the types of point clouds for which reconstruction methods contain difficulties. To this end, we have devised a benchmark for surface reconstruction, establishing a standard for measuring error in reconstruction. We then develop a new method for consistently orienting normals of such challenging point clouds by using a collection of harmonic functions, intrinsically defined on the point cloud. Next, we develop a new shape analysis tool which is tolerant to imperfections, by constructing distances directly on the point cloud defined as the likelihood of two points belonging to a mutually common medial ball, and apply this for segmentation and reconstruction. We extend this distance measure to define a diffusion process on the point cloud, tolerant to missing data, which is used for the purposes of matching incomplete shapes undergoing a nonrigid deformation. Lastly, we have developed an intrinsic method for multiresolution remeshing of a poor-quality triangulated surface via spectral bisection

    Topological features for monitoring human activities at distance

    Get PDF
    In this paper, a topological approach for monitoring human activities is presented. This approach makes possible to protect the person’s privacy hiding details that are not essential for processing a security alarm. First, a stack of human silhouettes, extracted by background subtraction and thresholding, are glued through their gravity centers, forming a 3D digital binary image I. Secondly, different orders of the simplices are applied on a simplicial complex obtained from I, which capture relations among the parts of the human body when walking. Finally, a topological signature is extracted from the persistence diagrams according to each order. The measure cosine is used to give a similarity value between topological signatures. In this way, the powerful topological tool known as persistent homology is novelty adapted to deal with gender classification, person identification, carrying bag detection and simple action recognition. Four experiments show the strength of the topological feature used; three of they use the CASIA-B database, and the fourth use the KTH database to present the results in the case of simple actions recognition. In the first experiment the named topological signature is evaluated, obtaining 98.8% (lateral view) of correct classification rates for gender identification. In the second one are shown results for person identification, obtaining an average of 98.5%. In the third one the result obtained is 93.8% for carrying bag detection. And in the last experiment the results were 97.7% walking and 97.5% running, which were the actions took from the KTH database

    Deformable Shape Completion with Graph Convolutional Autoencoders

    Full text link
    The availability of affordable and portable depth sensors has made scanning objects and people simpler than ever. However, dealing with occlusions and missing parts is still a significant challenge. The problem of reconstructing a (possibly non-rigidly moving) 3D object from a single or multiple partial scans has received increasing attention in recent years. In this work, we propose a novel learning-based method for the completion of partial shapes. Unlike the majority of existing approaches, our method focuses on objects that can undergo non-rigid deformations. The core of our method is a variational autoencoder with graph convolutional operations that learns a latent space for complete realistic shapes. At inference, we optimize to find the representation in this latent space that best fits the generated shape to the known partial input. The completed shape exhibits a realistic appearance on the unknown part. We show promising results towards the completion of synthetic and real scans of human body and face meshes exhibiting different styles of articulation and partiality.Comment: CVPR 201

    Variational segmentation problems using prior knowledge in imaging and vision

    Get PDF

    Symmetric Shape Morphing for 3D Face and Head Modelling

    Get PDF
    We propose a shape template morphing approach suitable for any class of shapes that exhibits approximate reflective symmetry over some plane. The human face and full head are examples. A shape morphing algorithm that constrains all morphs to be symmetric is a form of deformation regulation. This mitigates undesirable effects seen in standard morphing algorithms that are not symmetry-aware, such as tangential sliding. Our method builds on the Coherent Point Drift (CPD) algorithm and is called Symmetry-aware CPD (SA-CPD). Global symmetric deformations are obtained by removal of asymmetric shear from CPD's global affine transformations. Symmetrised local deformations are then used to improve the symmetric template fit. These symmetric deformations are followed by Laplace-Beltrami regularized projection which allows the shape template to fit to any asymmetries in the raw shape data. The pipeline facilitates construction of statistical models that are readily factored into symmetrical and asymmetrical components. Evaluations demonstrate that SA-CPD mitigates tangential sliding problem in CPD and outperforms other competing shape morphing methods, in some cases substantially. 3D morphable models are constructed from over 1200 full head scans, and we evaluate the constructed models in terms of age and gender classification. The best performance, in the context of SVM classification, is achieved using the proposed SA-CPD deformation algorithm
    • …
    corecore