1,662 research outputs found

    Scene-level Tracking and Reconstruction without Object Priors

    Full text link
    We present the first real-time system capable of tracking and reconstructing, individually, every visible object in a given scene, without any form of prior on the rigidness of the objects, texture existence, or object category. In contrast with previous methods such as Co-Fusion and MaskFusion that first segment the scene into individual objects and then process each object independently, the proposed method dynamically segments the non-rigid scene as part of the tracking and reconstruction process. When new measurements indicate topology change, reconstructed models are updated in real-time to reflect that change. Our proposed system can provide the live geometry and deformation of all visible objects in a novel scene in real-time, which makes it possible to be integrated seamlessly into numerous existing robotics applications that rely on object models for grasping and manipulation. The capabilities of the proposed system are demonstrated in challenging scenes that contain multiple rigid and non-rigid objects.Comment: Accepted by IROS202

    Semantically Informed Multiview Surface Refinement

    Full text link
    We present a method to jointly refine the geometry and semantic segmentation of 3D surface meshes. Our method alternates between updating the shape and the semantic labels. In the geometry refinement step, the mesh is deformed with variational energy minimization, such that it simultaneously maximizes photo-consistency and the compatibility of the semantic segmentations across a set of calibrated images. Label-specific shape priors account for interactions between the geometry and the semantic labels in 3D. In the semantic segmentation step, the labels on the mesh are updated with MRF inference, such that they are compatible with the semantic segmentations in the input images. Also, this step includes prior assumptions about the surface shape of different semantic classes. The priors induce a tight coupling, where semantic information influences the shape update and vice versa. Specifically, we introduce priors that favor (i) adaptive smoothing, depending on the class label; (ii) straightness of class boundaries; and (iii) semantic labels that are consistent with the surface orientation. The novel mesh-based reconstruction is evaluated in a series of experiments with real and synthetic data. We compare both to state-of-the-art, voxel-based semantic 3D reconstruction, and to purely geometric mesh refinement, and demonstrate that the proposed scheme yields improved 3D geometry as well as an improved semantic segmentation

    Past, Present, and Future of Simultaneous Localization And Mapping: Towards the Robust-Perception Age

    Get PDF
    Simultaneous Localization and Mapping (SLAM)consists in the concurrent construction of a model of the environment (the map), and the estimation of the state of the robot moving within it. The SLAM community has made astonishing progress over the last 30 years, enabling large-scale real-world applications, and witnessing a steady transition of this technology to industry. We survey the current state of SLAM. We start by presenting what is now the de-facto standard formulation for SLAM. We then review related work, covering a broad set of topics including robustness and scalability in long-term mapping, metric and semantic representations for mapping, theoretical performance guarantees, active SLAM and exploration, and other new frontiers. This paper simultaneously serves as a position paper and tutorial to those who are users of SLAM. By looking at the published research with a critical eye, we delineate open challenges and new research issues, that still deserve careful scientific investigation. The paper also contains the authors' take on two questions that often animate discussions during robotics conferences: Do robots need SLAM? and Is SLAM solved

    Multi-resolution mapping and planning for UAV navigation in attitude constrained environments

    Get PDF
    In this thesis we aim to bridge the gap between high quality map reconstruction and Unmanned Aerial Vehicles (UAVs) SE(3) motion planning in challenging environments with narrow openings, such as disaster areas, which requires attitude to be considered. We propose an efficient system that leverages the concept of adaptive-resolution volumetric mapping, which naturally integrates with the hierarchical decomposition of space in an octree data structure. Instead of a Truncated Signed Distance Function (TSDF), we adopt mapping of occupancy probabilities in log-odds representation, which allows representation of both surfaces, as well as the entire free, i.e.\ observed space, as opposed to unobserved space. We introduce a method for choosing resolution -on the fly- in real-time by means of a multi-scale max-min pooling of the input depth image. The notion of explicit free space mapping paired with the spatial hierarchy in the data structure, as well as map resolution, allows for collision queries, as needed for robot motion planning, at unprecedented speed. Our mapping strategy supports pinhole cameras as well as spherical sensor models. Additionally, we introduce a first-of-a-kind global minimum cost path search method based on A* that considers attitude along the path. State-of-the-art methods incorporate attitude only in the refinement stage. To make the problem tractable, our method exploits an adaptive and coarse-to-fine approach using global and local A* runs, plus an efficient method to introduce the UAV attitude in the process. We integrate our method with an SE(3) trajectory optimisation method based on a safe-flight-corridor, yielding a complete path planning pipeline. We quantitatively evaluate our mapping strategy in terms of mapping accuracy, memory, runtime performance, and planning performance showing improvements over the state-of-the-art, particularly in cases requiring high resolution maps. Furthermore, extensive evaluation is undertaken using the AirSim flight simulator under closed loop control in a set of randomised maps, allowing us to quantitatively assess our path initialisation method. We show that it achieves significantly higher success rates than the baselines, at a reduced computational burden.Open Acces
    • …
    corecore