65 research outputs found

    A Hybrid Approach to Network Robustness Optimization using Edge Rewiring and Edge Addition

    Get PDF
    Networks are ubiquitous in the modern world. From computer and telecommunication networks to road networks and power grids, networks make up many crucial pieces of infrastructure that we interact with on a daily basis. These networks can be subjected to damage from many different sources, both random and targeted. If one of these networks receives too much damage, it may be rendered inoperable, which can have disastrous consequences. For this reason, it is in the best interests of those responsible for these networks to ensure that they are highly robust to failure. Since it is not usually feasible to rebuild most existing networks from scratch to make them more resilient, it is necessary to have an approach that can modify an existing network to make it more robust to failure. Previous work has established several methods of accomplishing this task, including edge rewiring and edge addition. Both of these methods can be very useful for optimizing network robustness, but each comes with its own set of limitations. This thesis proposes a new hybrid approach to network robustness optimization that combines both of these approaches. Four edge rewiring based metaheuristic approaches were modified to incorporate one of three different edge addition strategies. A comparative study was performed on these new hybrid optimizers, comparing them to each other and to the vanilla edge rewiring only approach on both synthetic and real world networks. Experiments showed that this new hybrid approach to network robustness optimization leads to much more highly robust networks than an edge rewiring only approach

    An innovative metaheuristic strategy for solar energy management through a neural networks framework

    Get PDF
    Proper management of solar energy as an effective renewable source is of high importance toward sustainable energy harvesting. This paper offers a novel sophisticated method for predicting solar irradiance (SIr) from environmental conditions. To this end, an efficient metaheuristic technique, namely electromagnetic field optimization (EFO), is employed for optimizing a neural network. This algorithm quickly mines a publicly available dataset for nonlinearly tuning the network parameters. To suggest an optimal configuration, five influential parameters of the EFO are optimized by an extensive trial and error practice. Analyzing the results showed that the proposed model can learn the SIr pattern and predict it for unseen conditions with high accuracy. Furthermore, it provided about 10% and 16% higher accuracy compared to two benchmark optimizers, namely shuffled complex evolution and shuffled frog leaping algorithm. Hence, the EFO-supervised neural network can be a promising tool for the early prediction of SIr in practice. The findings of this research may shed light on the use of advanced intelligent models for efficient energy development

    Identifying and mitigating security risks for secure and robust NGI networks

    Get PDF
    Smart city development is important to achieve sustainable cities and societies which help enhance urban services, reduce resource consumption and decrease overall cost. The incorporation of smart cities with the Internet has given us the Next Generation of Internet (NGI) where every smart device exploits the interconnected services and infrastructure of the Internet. The underlying structure of NGI is composed of large scale heterogeneous multilevel systems-of-systems (SoSs) where each system represents a sensor, mobile phone, computer or smart device. Security and privacy is a fundamental requirement of NGI which is heavily dependent on the composition of services and connectivity of the underlying systems. Meaning any unsecure system can affect the security of the entire networked infrastructure/SoSs. Therefore, it is important to analyse and understand the composition of different systems at different levels in NGI in order to identify and mitigate vulnerabilities. This paper proposes a solution to identify and mitigate vulnerabilities within multilevel SoSs, to enhance security without deploying additional security at endpoints, and quantify security levels of individual systems and the entire composed system. The solution was tested and evaluated using simulation and a network testbed. Results show that NGI security can be enhanced with better composition of systems. © 2020 Elsevier Lt

    A Novel Theoretical Probabilistic Model for Opportunistic Routing with Applications in Energy Consumption for WSNs

    Get PDF
    This paper proposes a new theoretical stochastic model based on an abstraction of the opportunistic model for opportunistic networks. The model is capable of systematically computing the network parameters, such as the number of possible routes, the probability of successful transmission, the expected number of broadcast transmissions, and the expected number of receptions. The usual theoretical stochastic model explored in the methodologies available in the literature is based on Markov chains, and the main novelty of this paper is the employment of a percolation stochastic model, whose main benefit is to obtain the network parameters directly. Additionally, the proposed approach is capable to deal with values of probability specified by bounded intervals or by a density function. The model is validated via Monte Carlo simulations, and a computational toolbox (R-packet) is provided to make the reproduction of the results presented in the paper easier. The technique is illustrated through a numerical example where the proposed model is applied to compute the energy consumption when transmitting a packet via an opportunistic network

    Advances in Condition Monitoring, Optimization and Control for Complex Industrial Processes

    Get PDF
    The book documents 25 papers collected from the Special Issue “Advances in Condition Monitoring, Optimization and Control for Complex Industrial Processes”, highlighting recent research trends in complex industrial processes. The book aims to stimulate the research field and be of benefit to readers from both academic institutes and industrial sectors

    A Multi Agent System for Flow-Based Intrusion Detection Using Reputation and Evolutionary Computation

    Get PDF
    The rising sophistication of cyber threats as well as the improvement of physical computer network properties present increasing challenges to contemporary Intrusion Detection (ID) techniques. To respond to these challenges, a multi agent system (MAS) coupled with flow-based ID techniques may effectively complement traditional ID systems. This paper develops: 1) a scalable software architecture for a new, self-organized, multi agent, flow-based ID system; and 2) a network simulation environment suitable for evaluating implementations of this MAS architecture and for other research purposes. Self-organization is achieved via 1) a reputation system that influences agent mobility in the search for effective vantage points in the network; and 2) multi objective evolutionary algorithms that seek effective operational parameter values. This paper illustrates, through quantitative and qualitative evaluation, 1) the conditions for which the reputation system provides a significant benefit; and 2) essential functionality of a complex network simulation environment supporting a broad range of malicious activity scenarios. These results establish an optimistic outlook for further research in flow-based multi agent systems for ID in computer networks

    Synthesizing multi-layer perceptron network with ant lion biogeography-based dragonfly algorithm evolutionary strategy invasive weed and league champion optimization hybrid algorithms in predicting heating load in residential buildings

    Get PDF
    The significance of accurate heating load (HL) approximation is the primary motivation of this research to distinguish the most efficient predictive model among several neural-metaheuristic models. The proposed models are formulated through synthesizing a multi-layer perceptron network (MLP) with ant lion optimization (ALO), biogeography-based optimization (BBO), the dragonfly algorithm (DA), evolutionary strategy (ES), invasive weed optimization (IWO), and league champion optimization (LCA) hybrid algorithms. Each ensemble is optimized in terms of the operating population. Accordingly, the ALO-MLP, BBO-MLP, DA-MLP, ES-MLP, IWO-MLP, and LCA-MLP presented their best performance for population sizes of 350, 400, 200, 500, 50, and 300, respectively. The comparison was carried out by implementing a ranking system. Based on the obtained overall scores (OSs), the BBO (OS = 36) featured as the most capable optimization technique, followed by ALO (OS = 27) and ES (OS = 20). Due to the efficient performance of these algorithms, the corresponding MLPs can be promising substitutes for traditional methods used for HL analysis

    Electrical power prediction through a combination of multilayer perceptron with water cycle ant lion and satin bowerbird searching optimizers

    Get PDF
    Predicting the electrical power (PE) output is a significant step toward the sustainable development of combined cycle power plants. Due to the effect of several parameters on the simulation of PE, utilizing a robust method is of high importance. Hence, in this study, a potent metaheuristic strategy, namely, the water cycle algorithm (WCA), is employed to solve this issue. First, a nonlinear neural network framework is formed to link the PE with influential parameters. Then, the network is optimized by the WCA algorithm. A publicly available dataset is used to feed the hybrid model. Since the WCA is a population-based technique, its sensitivity to the population size is assessed by a trial-and-error effort to attain the most suitable configuration. The results in the training phase showed that the proposed WCA can find an optimal solution for capturing the relationship between the PE and influential factors with less than 1% error. Likewise, examining the test results revealed that this model can forecast the PE with high accuracy. Moreover, a comparison with two powerful benchmark techniques, namely, ant lion optimization and a satin bowerbird optimizer, pointed to the WCA as a more accurate technique for the sustainable design of the intended system. Lastly, two potential predictive formulas, based on the most efficient WCAs, are extracted and presented

    Intelligent Sensor Networks

    Get PDF
    In the last decade, wireless or wired sensor networks have attracted much attention. However, most designs target general sensor network issues including protocol stack (routing, MAC, etc.) and security issues. This book focuses on the close integration of sensing, networking, and smart signal processing via machine learning. Based on their world-class research, the authors present the fundamentals of intelligent sensor networks. They cover sensing and sampling, distributed signal processing, and intelligent signal learning. In addition, they present cutting-edge research results from leading experts
    • …
    corecore