35,914 research outputs found

    A Survey and Future Directions on Clustering: From WSNs to IoT and Modern Networking Paradigms

    Get PDF
    Many Internet of Things (IoT) networks are created as an overlay over traditional ad-hoc networks such as Zigbee. Moreover, IoT networks can resemble ad-hoc networks over networks that support device-to-device (D2D) communication, e.g., D2D-enabled cellular networks and WiFi-Direct. In these ad-hoc types of IoT networks, efficient topology management is a crucial requirement, and in particular in massive scale deployments. Traditionally, clustering has been recognized as a common approach for topology management in ad-hoc networks, e.g., in Wireless Sensor Networks (WSNs). Topology management in WSNs and ad-hoc IoT networks has many design commonalities as both need to transfer data to the destination hop by hop. Thus, WSN clustering techniques can presumably be applied for topology management in ad-hoc IoT networks. This requires a comprehensive study on WSN clustering techniques and investigating their applicability to ad-hoc IoT networks. In this article, we conduct a survey of this field based on the objectives for clustering, such as reducing energy consumption and load balancing, as well as the network properties relevant for efficient clustering in IoT, such as network heterogeneity and mobility. Beyond that, we investigate the advantages and challenges of clustering when IoT is integrated with modern computing and communication technologies such as Blockchain, Fog/Edge computing, and 5G. This survey provides useful insights into research on IoT clustering, allows broader understanding of its design challenges for IoT networks, and sheds light on its future applications in modern technologies integrated with IoT.acceptedVersio

    A Review of the Energy Efficient and Secure Multicast Routing Protocols for Mobile Ad hoc Networks

    Full text link
    This paper presents a thorough survey of recent work addressing energy efficient multicast routing protocols and secure multicast routing protocols in Mobile Ad hoc Networks (MANETs). There are so many issues and solutions which witness the need of energy management and security in ad hoc wireless networks. The objective of a multicast routing protocol for MANETs is to support the propagation of data from a sender to all the receivers of a multicast group while trying to use the available bandwidth efficiently in the presence of frequent topology changes. Multicasting can improve the efficiency of the wireless link when sending multiple copies of messages by exploiting the inherent broadcast property of wireless transmission. Secure multicast routing plays a significant role in MANETs. However, offering energy efficient and secure multicast routing is a difficult and challenging task. In recent years, various multicast routing protocols have been proposed for MANETs. These protocols have distinguishing features and use different mechanismsComment: 15 page

    ANALIZA I WYBÓR PROTOKOŁÓW ROUTINGU W SIECIACH BEZPRZEWODOWYCH AD-HOC W OPARCIU O SIECI NEURONOWE

    Get PDF
    In the past few years, we have seen a rapid expansion in the field of mobile computing due to the proliferation of inexpensive, widely available wireless devices. However, current devices, applications and protocols are solely focused on cellular or wireless local area networks (WLANs), not taking into account the great potential offered by ad hoc networking. Ad hoc networks are wireless mobile networks that can operate without infrastructure and without centralized network management. In such networks, the wireless mobile nodes may dynamically enter the network as well as leave the network. Mobility and dynamic topology are the main characteristics of ad hoc networks. In the last years, the hundreds of new routing protocols were designed, that are used for the various scenarios of this design space. The routing features in wireless ad hoc networks are described. The corresponding routing protocols are reviewed. The paper proposes a method for selecting the preferred protocol wireless networks using the mathematical tools of neural networks.Obecnie intensywnie rozwija się kierunek naukowy w zakresie budowy sieci telekomunikacyjnych o zmiennej topologii z wykorzystaniem urządzeń bezprzewodowych. Jednak istniejące urządzenia i protokoły koncentrują się wyłącznie na komórkowe lub bezprzewodowe lokalne sieci (WLAN), niezależnie od potencjału sieci Ad-Hoc. Sieci Ad-Hoc są to sieci bezprzewodowe, które mogą pracować bez infrastruktury i bez scentralizowanego zarządzania siecią. W takich sieciach węzły mogą dynamicznie poruszać się po sieci. Mobilność oraz dynamiczna topologia to kluczowe cechy sieci Ad-Hoc. W ostatnich latach opracowano wiele protokołów dla sieci Ad-Hoc zaprojektowanych dla różnych scenariuszy organizacji routingu. Opisano funkcje routingu w sieciach bezprzewodowych Ad-Hoc i przedstawiono przegląd odpowiednich protokołów routingu. W artykule zaproponowano metodę wyboru protokołu sieci bezprzewodowej z wykorzystaniem matematycznego aparatu sieci neuronowych

    Mobile ad hoc networks for intelligent systems

    Get PDF
    Advances in wireless technology and portable computing along with demands for high user mobility have provided a major promotion toward the development of ad hoc networks. Mobile ad hoc networks feature dynamic topology, self-organization, limited bandwidth and battery power of a node. They do not rely on specialized routers for path discovery and traffic routing. Research on ad hoc networks has been extensively investigated in the past few years and related work has focused on many of the layers of the communications architecture. This research intends to investigate applications of MANET for intelligent systems, including intelligent transportation system (ITS), sensor network and mobile intelligent robot network, and propose some approaches to topology management, link layer multiple access and routing algorithms. Their performance is evaluated by theoretical analysis and off-the-shelf simulation tools. Most current research on ad hoc networks assumes the availability of IEEE 802.11. However, the RTS/CTS protocol of 802.11 still leads to packet collision which in turn decreases the network throughput and lifetime. For sensor networks, sensors are mostly battery operated. Hence, resolving packet collision may improve network lifetime by saving valuable power. Using space and network diversity combination, this work proposes a new packet separation approach to packet collision caused by masked nodes. Inter-vehicle communication is a key component of ITS and it is also called vehicular ad hoc network. VANET has many features different from regular MANETs in terms of mobility, network size and connectivity. Given rapid topology changes and network partitioning, this work studies how to organize the numerous vehicular nodes and establish message paths between any pair of vehicular nodes if they are not apart too far away. In urban areas, the inter-vehicle communication has different requirements and constraints than highway environments. The proposed position-based routing strategy for VANETs utilizes the traffic pattern in city environments. Packets are forwarded based on traffic lights timing sequence and the moving direction of relaying vehicles. A multicast protocol is also introduced to visualize the real time road traffic with customized scale. Only vehicles related to a source node\u27s planned trajectory will reply the query packet. The visualized real time traffic information therefore helps the driver make better decision in route planning when traffic congestion happens. Nowadays robots become more and more powerful and intelligent. They can take part in operations in a cooperative manner which makes distributed control necessary. Ad hoc robot communication network is still fresh field for researchers working on networking technology. This work investigates some key issues in robot ad hoc network and evaluate the challenges while establishing robot ad hoc networks

    Clustering in Multi-Channel Cognitive Radio Ad Hoc and Sensor Networks

    Get PDF
    © 1979-2012 IEEE. CR enables dynamic spectrum access to utilize licensed spectrum when it is idle. CR technology is applied to wireless ad hoc and sensor networks to form CRAHNs and CRSNs, respectively. Clustering is an efficient topology management technique to regulate communication and allocate spectrum resources by CR capabilities of nodes in CRAHNs and CRSNs. In this article, we thoroughly investigate the benefits and functionalities of clustering such as topology, spectrum, and energy management in these networks. We also overview motivations for and challenges of clustering in CRAHNs and CRSNs. Existing clustering schemes are reviewed and compared. We conclude by revealing key considerations and possible solutions for spectrum-aware clustering in multi-channel CRAHNs and CRSNs

    Topology management protocols in ad hoc wireless sensor networks

    Get PDF
    A wireless sensor network (WSN) is comprised of a few hundred or thousand au-tonomous sensor nodes spatially distributed over a particular region. Each sensornode is equipped with a wireless communication device, a small microprocessor, anda battery-powered energy source. Typically, the applications of WSNs such as habitatmonitoring, re detection, and military surveillance, require data collection, process-ing, and transmission among the sensor nodes. Due to their energy constraints andhostile environments, the main challenge in the research of WSN lies in prolongingthe lifetime of WSNs.In this dissertation, we present four dierent topology management protocols forK-coverage and load balancing to prolong the lifetime of WSNs.First, we present a Randomly Ordered Activation and Layering (ROAL) protocolfor K-coverage in a stationary WSN. The ROAL suggests a new model of layer cov-erage that can construct a K-covered WSN using the layer information received fromits previously activated nodes in the sensing distance. Second, we enhance the faulttolerance of layer coverage through a Circulation-ROAL (C-ROAL) protocol. Us-ing the layer number, the C-ROAL can activate each node in a round-robin fashionduring a predened period while conserving reconguration energy. Next, MobilityResilient Coverage Control (MRCC) is presented to assure K-coverage in the presence of mobility, in which a more practical and reliable model for K-coverage with nodalmobility is introduced. Finally, we present a Multiple-Connected Dominating Set(MCDS) protocol that can balance the network trac using an on-demand routingprotocol. The MCDS protocol constructs and manages multiple backbone networks,each of which is constructed with a connected dominating set (CDS) to ensure a con-nected backbone network. We describe each protocol, and compare the performanceof our protocols with Dynamic Source Routing (DSR) and/or existing K-coveragealgorithms through extensive simulations.The simulation results obtained by the ROAL protocol show that K-coverage canbe guaranteed with more than 95% coverage ratio, and signicantly extend networklifetime against a given WSN. We also observe that the C-ROAL protocol provides abetter reconguration method, which consumes only less than 1% of the recongura-tion energy in the ROAL protocol, with a greatly reduced packet latency. The MRCCprotocol, considering the mobility, achieves better coverage by 1.4% with 22% feweractive sensors than that of an existing coverage protocol for the mobility. The resultson the MCDS protocol show that the energy depletion ratio of nodes is decreasedconsequently, while the network throughput is improved by 35%

    Improving Fairness and Utilisation in Ad Hoc Networks

    Get PDF
    Ad hoc networks represent the current de-facto alternative for infrastructure-less environments, due to their self-configuring and resilience characteristics. Ad hoc networks flexibility benefits, such as unrestrained computing, lack of centralisation, and ease of deployment at low costs, are tightly bound with relevant deficiencies such as limited resources and management difficulty. Ad hoc networks witnessed high attention from the research community due to the numerous challenges faced when deploying such a technology in real scenarios. Starting with the nature of the wireless environment, which raises significant transmission issues when compared with the wired counterpart, ad hoc networks require a different approach when addressing the data link problems. Further, the high packet loss due to wireless contention, independent of network congestion, requires a different approach when considering quality of service degradation and unfair channel resources distribution among competing flows. Although these issues have already been considered to some extent by researchers, there is still room to improve quality of service by reducing the effect of packet loss and fairly distributing the medium access among competing nodes. The aim of this thesis is to propose a set of mechanisms to alleviate the effect of packet loss and to improve fairness in ad hoc networks. A transport layer algorithm has been proposed to overcome the effects of hidden node collisions and to reduce the impact of wireless link contention by estimating the four hop delay and pacing packet transmissions accordingly. Furthermore, certain topologies have been identified, in which the standard IEEE 802.11 faces degradation in channel utilisation and unfair bandwidth allocation. Three link layer mechanisms have been proposed to tackle the challenges the IEEE 802.11 faces in the identified scenarios to impose fairness in ad hoc networks through fairly distributing channel resources between competing nodes. These mechanisms are based on monitoring the collision rate and penalising the greedy nodes where no competing nodes can be detected but interference exists, monitoring traffic at source nodes to police access to the channel where only source nodes are within transmission range of each other, and using MAC layer acknowledgements to flag unfair bandwidth allocation in topologies where only the receivers are within transmission range of each other. The proposed mechanisms have been integrated into a framework designed to adapt and to dynamically select which mechanism to adopt, depending on the network topology. It is important to note that the proposed mechanisms and framework are not alternatives to the standard MAC protocol but are an enhancement and are triggered by the failure of the IEEE 802.11 protocol to distribute the channel resources fairly. All the proposed mechanisms have been validated through simulations and the results obtained from the experiments show that the proposed schemes fairly distribute channel resources fairly and outperform the performance of the IEEE 802.11 protocol in terms of channel utilisation as well as fairness
    corecore