726 research outputs found

    Mesh-Mon: a Monitoring and Management System for Wireless Mesh Networks

    Get PDF
    A mesh network is a network of wireless routers that employ multi-hop routing and can be used to provide network access for mobile clients. Mobile mesh networks can be deployed rapidly to provide an alternate communication infrastructure for emergency response operations in areas with limited or damaged infrastructure. In this dissertation, we present Dart-Mesh: a Linux-based layer-3 dual-radio two-tiered mesh network that provides complete 802.11b coverage in the Sudikoff Lab for Computer Science at Dartmouth College. We faced several challenges in building, testing, monitoring and managing this network. These challenges motivated us to design and implement Mesh-Mon, a network monitoring system to aid system administrators in the management of a mobile mesh network. Mesh-Mon is a scalable, distributed and decentralized management system in which mesh nodes cooperate in a proactive manner to help detect, diagnose and resolve network problems automatically. Mesh-Mon is independent of the routing protocol used by the mesh routing layer and can function even if the routing protocol fails. We demonstrate this feature by running Mesh-Mon on two versions of Dart-Mesh, one running on AODV (a reactive mesh routing protocol) and the second running on OLSR (a proactive mesh routing protocol) in separate experiments. Mobility can cause links to break, leading to disconnected partitions. We identify critical nodes in the network, whose failure may cause a partition. We introduce two new metrics based on social-network analysis: the Localized Bridging Centrality (LBC) metric and the Localized Load-aware Bridging Centrality (LLBC) metric, that can identify critical nodes efficiently and in a fully distributed manner. We run a monitoring component on client nodes, called Mesh-Mon-Ami, which also assists Mesh-Mon nodes in the dissemination of management information between physically disconnected partitions, by acting as carriers for management data. We conclude, from our experimental evaluation on our 16-node Dart-Mesh testbed, that our system solves several management challenges in a scalable manner, and is a useful and effective tool for monitoring and managing real-world mesh networks

    Social Network Analysis Plugin (SNAP) for Mesh Networks

    Get PDF
    In a network, bridging nodes are those nodes that from a topological perspective, are strategically located between highly connected regions of nodes. Thus, they have high values of the Bridging Centrality (BC) metric. We recently introduced the Localized Bridging Centrality (LBC) metric, which can identify such nodes via distributed computation, yet has an accuracy equal to that of the centralized BC metric. The LBC and BC metrics are based on the Social Network Analysis (SNA) metric betweenness centrality . We now introduce a new SNA metric that is more suitable for use in wireless mesh networks: the Localized Load-aware Bridging Centrality (LLBC) metric. The LLBC metric improves upon LBC by detecting critical bridging nodes while taking into account the actual traffic flows present in a mesh network. We only use local information from surrounding nodes to compute the LLBC metric, thus our LLBC metric is designed for scalable distributed computation and distributed network analysis. We developed the SNA Plugin (SNAP) for the Optimized Link State Routing (OLSR) protocol to study the potential use of LBC and LLBC in improving multicast communications. We present some promising initial results for SNAP from real and emulated mesh networks. SNAP is open source and free for academic use

    Resilience and technological diversity in smart homes

    Get PDF
    This article introduces our abstract modeling strategy to represent the general features and topology of the kinds of integrated and technologically diverse networks that feature in IoT systems. We begin with smart home networks. We generate instances of our model and analyze their graph-theoretic properties with an emphasis on the resilience of critical services and connections to the Global Internet. In addition to considering the network connectivity graph of nodes and links in the model, we explain our technology interdependence graph techniques. Technology interdependence graphs allow us to illuminate critical interactions in multi-technology systems such as smart homes. Using relatively simple examples we show how our approach permits the exploration of the resilience properties of various instances of smart systems involving complex technological interdependency. We describe a practical way of approaching the graphs of systems with a wide variety of integrated technologies and we discuss properties such as connectedness and other metrics. This approach can serve as the basis for tackling the challenge of designing resilient IoT-based smart-cities from the point of view of network topologies. We also study smart home resilience through path redundancy and heterogeneity of network technologies with graph centrality metrics

    230702

    Get PDF
    This article presents a novel centrality-driven gateway designation framework for the improved real-time performance of low-power wireless sensor networks (WSNs) at system design time. We target time-synchronized channel hopping (TSCH) WSNs with centralized network management and multiple gateways with the objective of enhancing traffic schedulability by design. To this aim, we propose a novel network centrality metric termed minimal-overlap centrality that characterizes the overall number of path overlaps between all the active flows in the network when a given node is selected as gateway. The metric is used as a gateway designation criterion to elect as a gateway the node leading to the minimal number of overlaps. The method is then extended to multiple gateways with the aid of the unsupervised learning method of spectral clustering. Concretely, after a given number of clusters are identified, we use the new metric at each cluster to designate as cluster gateway the node with the least overall number of overlaps. Extensive simulations with random topologies under centralized earliest-deadline-first (EDF) scheduling and shortest-path routing suggest our approach is dominant over traditional centrality metrics from social network analysis, namely, eigenvector, closeness, betweenness, and degree. Notably, our approach reduces by up to 40% the worst-case end-to-end deadline misses achieved by classical centrality-driven gateway designation methods.This work was partially supported by National Funds through FCT/MCTES (Portuguese Foundation for Science and Technology), within the CISTER Research Unit (UIDB/04234/2020); by the Operational Competitiveness Programme and Internationalization (COMPETE 2020) under the PT2020 Agreement, through the European Regional Development Fund (ERDF); also by FCT and the ESF (European Social Fund) through the Regional Operational Programme (ROP) Norte 2020, under PhD grant 2020.06685.BD.info:eu-repo/semantics/publishedVersio

    Investigating Hastily-Formed Collaborative Networks

    Get PDF
    This research explores both the human and technical aspects of the network centric environment in the context of a major disaster or incident of national significance. The National Incident Management System (NIMS) is viewed by the authors as a social network, and an organizational topology is developed to improve its effectiveness. A rapid Network Deployment Kit (RNDK) using commercial off the shelf (COTS) wireless networking technology is also proposed that facilitates immediate NIMS implementation. The integration of logical and technical analyses forms a comprehensive systems engineering proposal to facilitate collaboration in a net-centric environment. It is envisioned that the methodology used herein to derive and evaluate comprehensive networks proves extendable to other contexts thereby contributing to the netcentric body of knowledge

    220603

    Get PDF
    This research proposes a co-design framework for scheduling, routing and gateway designation to improve the real-time performance of low-power wireless mesh networks. We target time-synchronized channel hopping (TSCH) networks with centralized network management and a single gateway. The end goal is to exploit existing trade-offs between the three dimensions to enhance traffic schedulability at systems' design time. The framework we propose considers a global Earliest-Deadline-First (EDF) scheduler that operates in conjunction with the minimal-overlap (MO) shortest-path routing, after a centrality-driven gateway designation is concluded. Simulation results over varying settings suggest our approach can lead to optimal or near-optimal real-time network performance, with 3~times more schedulable flows than a naive real-time configuration.This work was partially supported by National Funds through FCT/MCTES (Portuguese Foundation for Science and Technology), within the CISTER Research Unit (UIDB/04234/2020); by the Operational Competitiveness Programme and Internationalization (COMPETE 2020) under the PT2020 Agreement, through the European Regional Development Fund (ERDF); by FCT and the ESF (European Social Fund) through the Regional Operational Programme (ROP) Norte 2020, under PhD grant 2020.06685.BD.N/
    • …
    corecore