1,036 research outputs found

    A network-aware framework for energy-efficient data acquisition in wireless sensor networks

    Get PDF
    Wireless sensor networks enable users to monitor the physical world at an extremely high fidelity. In order to collect the data generated by these tiny-scale devices, the data management community has proposed the utilization of declarative data-acquisition frameworks. While these frameworks have facilitated the energy-efficient retrieval of data from the physical environment, they were agnostic of the underlying network topology and also did not support advanced query processing semantics. In this paper we present KSpot+, a distributed network-aware framework that optimizes network efficiency by combining three components: (i) the tree balancing module, which balances the workload of each sensor node by constructing efficient network topologies; (ii) the workload balancing module, which minimizes data reception inefficiencies by synchronizing the sensor network activity intervals; and (iii) the query processing module, which supports advanced query processing semantics. In order to validate the efficiency of our approach, we have developed a prototype implementation of KSpot+ in nesC and JAVA. In our experimental evaluation, we thoroughly assess the performance of KSpot+ using real datasets and show that KSpot+ provides significant energy reductions under a variety of conditions, thus significantly prolonging the longevity of a WSN

    Markov Decision Processes with Applications in Wireless Sensor Networks: A Survey

    Full text link
    Wireless sensor networks (WSNs) consist of autonomous and resource-limited devices. The devices cooperate to monitor one or more physical phenomena within an area of interest. WSNs operate as stochastic systems because of randomness in the monitored environments. For long service time and low maintenance cost, WSNs require adaptive and robust methods to address data exchange, topology formulation, resource and power optimization, sensing coverage and object detection, and security challenges. In these problems, sensor nodes are to make optimized decisions from a set of accessible strategies to achieve design goals. This survey reviews numerous applications of the Markov decision process (MDP) framework, a powerful decision-making tool to develop adaptive algorithms and protocols for WSNs. Furthermore, various solution methods are discussed and compared to serve as a guide for using MDPs in WSNs

    Analyzing the Performance of Centralized Clustering Techniques for Realistic Wireless Sensor Network Topologies

    Get PDF
    AbstractClustering techniques in wireless sensor networks enables energy efficient coordination among the densely deployed nodes for data delivery till the base station. Many clustering protocols have been suggested in the recent past. The topology of the nodes, mostly seen in the literature, is of random type. This paper analyzes the performance aspects of various centralized clustering techniques for wireless sensor networks. LEACH-Centralized, KMeans-CP, FCM-CP and HSA-CP protocols have been compared with respect to clustering and data delivery process for various realistic topologies. The simulations were performed for these protocols and performance of the protocols has been critically analyzed. HSA-CP clustering method performs better compared to other techniques for almost each topology examined in the paper

    Green inter-cluster interference management in uplink of multi-cell processing systems

    Get PDF
    This paper examines the uplink of cellular systems employing base station cooperation for joint signal processing. We consider clustered cooperation and investigate effective techniques for managing inter-cluster interference to improve users' performance in terms of both spectral and energy efficiency. We use information theoretic analysis to establish general closed form expressions for the system achievable sum rate and the users' Bit-per-Joule capacity while adopting a realistic user device power consumption model. Two main inter-cluster interference management approaches are identified and studied, i.e., through: 1) spectrum re-use; and 2) users' power control. For the former case, we show that isolating clusters by orthogonal resource allocation is the best strategy. For the latter case, we introduce a mathematically tractable user power control scheme and observe that a green opportunistic transmission strategy can significantly reduce the adverse effects of inter-cluster interference while exploiting the benefits from cooperation. To compare the different approaches in the context of real-world systems and evaluate the effect of key design parameters on the users' energy-spectral efficiency relationship, we fit the analytical expressions into a practical macrocell scenario. Our results demonstrate that significant improvement in terms of both energy and spectral efficiency can be achieved by energy-aware interference management

    The support of multipath routing in IPv6-based internet of things

    Get PDF
    The development of IPv6-based network architectures for Internet of Things (IoT) systems is a feasible approach to widen the horizon for more effective applications, but remains a challenge. Network routing needs to be effectively addressed in such environments of scarce computational and energy resources. The Internet Engineering Task Force (IETF) specified the IPv6 Routing Protocol for Low Power and Lossy Network (RPL) to provide a basic IPv6-based routing framework for IoT networks. However, the RPL design has the potential of extending its functionality to a further limit and incorporating the support of advanced routing mechanisms. These include multipath routing which has opened the doors for great improvements towards efficient energy balancing, load distribution, and even more. This paper fulfilled a need for an effective review of recent advancements in Internet of Things (IoT) networking. In particular, it presented an effective review and provided a taxonomy of the different multipath routing solutions enhancing the RPL protocol. The aim was to discover its current state and outline the importance of integrating such a mechanism into RPL to revive its potentiality to a wider range of IoT applications. This paper also discussed the latest research findings and provided some insights into plausible follow-up researches

    Maximizing Network Lifetime of Wireless Sensor-Actuator Networks under Graph Routing

    Get PDF
    Process industries are adopting wireless sensor-actuator networks (WSANs) as the communication infrastructure. The dynamics of industrial environments and stringent reliability requirements necessitate high degrees of fault tolerance in routing. WirelessHART is an open industrial standard for WSANs that have seen world-wide deployments. WirelessHART employs graph routing schemes to achieve network reliability through multiple paths. Since many industrial devices operate on batteries in harsh environments where changing batteries are prohibitively labor-intensive, WSANs need to achieve long network lifetime. To meet industrial demand for long-term reliable communication, this paper studies the problem of maximizing network lifetime for WSANs under graph routing. We formulate the network lifetime maximization problem for WirelessHART networks under graph routing. Then, we propose the optimal algorithm and two more efficient algorithms to prolong the network lifetime of WSANs. Experiments in a physical testbed and simulations show our linear programming relaxation and greedy heuristics can improve the network lifetime by up to 50% while preserving the reliability benefits of graph routing

    Towards LoRa mesh networks for the IoT

    Get PDF
    There are several LPWAN radio technologies providing wireless communication to the billions of connected devices that form the so-called IoT. Among them, LoRa has emerged in recent years as a popular solution for low power embedded devices to transmit data at long distances on a reduced energy budget. Most often, LoRa is used as the physical layer of LoRaWAN, an open standard that defines a MAC layer and specifies the star-of-stars topology, operation, roles and mechanisms for an integrated, full-stack IoT architecture. Nowadays, millions of devices use LoRaWAN networks in all sorts of agriculture, smart cities and buildings, industry, logistics and utilities scenarios. Despite its success in all sorts of IoT domains and environments, there are still use cases that would benefit from more flexible network topologies than LoRaWAN's star-of-stars. For instance, in scenarios where the deployment and operation of the backbone network infrastructure is technically or economically challenging, a more flexible model may improve certain performance metrics. As a first major contribution, this thesis investigates the effects of adding multi-hop capability to LoRaWAN, by means of the realistic use case of a communication system based on this architecture that provides a coordinated response in the aftermath of natural disasters like an earthquake. The capacity of end nodes to forward packets and perform multi-hop transmissions is explored, as a strategy to overcome gateway infrastructure failures, and analyzed for challenges, benefits and drawbacks in a massive system with thousands of devices. LoRa is also used as a stand-alone radio technology, independently from the LoRaWAN architecture. Its CSS modulation offers many advantages in LPWANs for IoT deployments. In particular, its different SFs available determine a trade-off between transmission time (i.e., data rate) and sensitivity (i.e., distance reach), and also generate quasi-orthogonal signals that can be demodulated concurrently by different receivers. The second major contribution of this thesis is the design of a minimalistic distance-vector routing protocol for embedded IoT devices featuring a LoRa transceiver, and the proposal of a path cost calculation metric that takes advantage of the multi-SF capability to reduce end-to-end transmission time. The protocol is evaluated through simulation and compared with other well-known routing strategies, analyzing and discussing its suitability for heterogeneous IoT LoRa mesh networks.Hi ha diverses tecnologies de ràdio LPWAN que proporcionen comunicació sense fils als milers de milions de dispositius connectats que conformen l'anomenada IoT. D'entre elles, LoRa ha emergit en els darrers anys com una solució popular per a què dispositius encastats amb pocs recursos transmetin dades a llargues distàncies amb un cost energètic reduït. Tot sovint, LoRa s'empra com la capa física de LoRaWAN, un estàndard obert que defineix una capa MAC i que especifica la topologia en estrella d'estrelles, l'operació, els rols i els mecanismes per implementar una arquitectura de la IoT integrada. A dia d'avui, milions de dispositius fan servir xarxes LoRaWAN en escenaris d'agricultura, edificis i ciutats intel·ligents, indústria, logística i subministraments. Malgrat el seu èxit en tot tipus d'entorns i àmbits de la IoT, encara romanen casos d'ús que es beneficiarien de topologies de xarxa més flexibles que l'estrella d'estrelles de LoRaWAN. Per exemple, en escenaris on el desplegament i l'operació de la infraestructura troncal de xarxa és tècnicament o econòmica inviable, una topologia més flexible podria millorar certs aspectes del rendiment. Com a primera contribució principal, en aquesta tesi s'investiguen els efectes d'afegir capacitat de transmissió multi-salt a LoRaWAN, mitjançant el cas d'ús realista d'un sistema de comunicació, basat en aquesta arquitectura, per proporcionar una resposta coordinada en els moments posteriors a desastres naturals, tals com un terratrèmol. En concret, s'explora l'estratègia d'afegir la capacitat de reenviar paquets als nodes finals per tal d'eludir les fallades en la infraestructura, i se n'analitzen els reptes, beneficis i inconvenients per a un sistema massiu amb milers de dispositius LoRa s'empra també com a tecnologia de ràdio de forma autònoma, independentment de l'arquitectura LoRaWAN. La seva modulació CSS li confereix molts avantatges en xarxes LPWAN per a desplegaments de la IoT. En particular, els diferents SFs disponibles hi determinen un compromís entre la durada de les transmissions (i.e., la taxa de dades) i la sensibilitat en la recepció (i.e., l'abast en distància), alhora que generen senyals quasi-ortogonals que poden ser desmodulades de forma concurrent per receptors diferents. La segona contribució principal d'aquesta tesi és el disseny d'un protocol d'encaminament dinàmic vector-distància per a dispositius de la IoT encastats amb un transceptor LoRa, i la proposta d'una mètrica per calcular el cost d'un camí que aprofita la capacitat multi-SF per minimitzar el temps de transmissió d'extrem a extrem. El protocol és avaluat mitjançant simulacions i comparat amb altres estratègies d'encaminament conegudes, analitzant la seva conveniència per a xarxes LoRa mallades per a la IoT.Existen varias tecnologías de radio LPWAN que proporcionan comunicación inalámbrica a los miles de millones de dispositivos conectados que forman el llamado IoT. De entre ellas, LoRa ha emergido en los últimos años como una solución popular para que dispositivos embebidos con pocos recursos transmitan datos a largas distancias con un coste energético reducido. Habitualmente, LoRa se usa como la capa física de LoRaWAN, un estándar abierto que define una capa MAC y que especi_ca la topología en estrella de estrellas, la operación, los roles y los mecanismos para implantar una arquitectura del IoT integrada. A día de hoy, millones de dispositivos utilizan redes LoRaWAN en escenarios de agricultura, edificios y ciudades inteligentes, industria, logística y suministros. A pesar de su éxito en todo tipo de entornos y ámbitos del IoT, existen casos de uso que se beneficiaran de topologías de red más flexibles que la estrella de estrellas de LoRaWAN. Por ejemplo, en escenarios en los que el despliegue y la operación de la infraestructura troncal de red es técnica o económicamente inviable, una topología más flexible podrá mejorar ciertos aspectos del rendimiento. Como primera contribución principal, en esta tesis se investigan los efectos de añadir capacidad de transmisión multi-salto a LoRaWAN, mediante el caso de uso realista de un sistema de comunicación basado en dicha arquitectura, para proporcionar una respuesta coordinada en los momentos posteriores a desastres naturales, tales como un terremoto. En concreto, se explora la estrategia de añadir la capacidad de reenviar paquetes a los nodos finales para sortear las fallas en la infraestructura, y se analizan los retos, beneficios e inconvenientes para un sistema masivo con miles de dispositivos. LoRa se usa también como tecnología de radio de forma autónoma, independientemente de la arquitectura LoRaWAN. Su modulación CSS le confiere muchas ventajas en redes LPWAN para despliegues de IoT. En particular, los distintos SFs disponibles determinan un compromiso entre la duración de las transmisiones (i.e., la tasa de datos) y la sensibilidad en la recepción (i.e., el alcance en distancia), a la vez que generan señales cuasi-ortogonales que pueden ser desmoduladas de forma concurrente por receptores distintos. En segundo lugar, esta tesis contiene el diseño de un protocolo de enrutamiento dinámico vector-distancia para dispositivos Internet of Things (IoT) embebidos con un transceptor LoRa, y propone una métrica para calcular el coste de un camino que aprovecha la capacidad multi-SF para minimizar el tiempo de transmisión de extremo a extremo. El protocolo es evaluado y comparado con otras estrategias de enrutamiento conocidas, analizando su conveniencia para redes LoRa malladas para el IoT.Postprint (published version

    An Enhanced Backbone-Assisted Reliable Framework for Wireless Sensor Networks

    Get PDF
    An extremely reliable source to sink communication is required for most of the contemporary WSN applications especially pertaining to military, healthcare and disaster-recovery. However, due to their intrinsic energy, bandwidth and computational constraints, Wireless Sensor Networks (WSNs) encounter several challenges in reliable source to sink communication. In this paper, we present a novel reliable topology that uses reliable hotlines between sensor gateways to boost the reliability of end-to-end transmissions. This reliable and efficient routing alternative reduces the number of average hops from source to the sink. We prove, with the help of analytical evaluation, that communication using hotlines is considerably more reliable than traditional WSN routing. We use reliability theory to analyze the cost and benefit of adding gateway nodes to a backbone-assisted WSN. However, in hotline assisted routing some scenarios where source and the sink are just a couple of hops away might bring more latency, therefore, we present a Signature Based Routing (SBR) scheme. SBR enables the gateways to make intelligent routing decisions, based upon the derived signature, hence providing lesser end-to-end delay between source to the sink communication. Finally, we evaluate our proposed hotline based topology with the help of a simulation tool and show that the proposed topology provides manifold increase in end-to-end reliability
    • …
    corecore