134 research outputs found

    Automation, Protection and Control of Substation Based on IEC 61850

    Get PDF
    Reliability of power system protection system has been a key issue in the substation operation due to the use of multi-vendor equipment of proprietary features, environmental issues, and complex fault diagnosis. Failure to address these issues could have a significant effect on the performance of the entire electricity grid. With the introduction of IEC 61850 standard, substation automation system (SAS) has significantly altered the scenario in utilities and industries as indicated in this thesis

    Error Behaviour In Optical Networks

    Get PDF
    Optical fibre communications are now widely used in many applications, including local area computer networks. I postulate that many future optical LANs will be required to operate with limited optical power budgets for a variety of reasons, including increased system complexity and link speed, low cost components and minimal increases in transmit power. Some developers will wish to run links with reduced power budget margins, and the received data in these systems will be more susceptible to errors than has been the case previously. The errors observed in optical systems are investigated using the particular case of Gigabit Ethernet on fibre as an example. Gigabit Ethernet is one of three popular optical local area interconnects which use 8B/10B line coding, along with Fibre Channel and Infiniband, and is widely deployed. This line encoding is also used by packet switched optical LANs currently under development. A probabilistic analysis follows the effects of a single channel error in a frame, through the line coding scheme and the MAC layer frame error detection mechanisms. Empirical data is used to enhance this original analysis, making it directly relevant to deployed systems. Experiments using Gigabit Ethernet on fibre with reduced power levels at the receiver to simulate the effect of limited power margins are described. It is found that channel bit error rate and packet loss rate have only a weakly deterministic relationship, due to interactions between a number of non-uniform error characteristics at various network sub-layers. Some data payloads suffer from high bit error rates and low packet loss rates, compared to others with lower bit error rates and yet higher packet losses. Experiments using real Internet traffic contribute to the development of a novel model linking packet loss, the payload damage rate, and channel bit error rate. The observed error behaviours at various points in the physical and data link layers are detailed. These include data-dependent channel errors; this error hot- spotting is in contrast to the failure modes observed in a copper-based system. It is also found that both multiple channel errors within a single code-group, and multiple error instances within a frame, occur more frequently than might be expected. The overall effects of these error characteristics on the ability of cyclic redundancy checks (CRCs) to detect errors, and on the performance of higher layers in the network, is considered. This dissertation contributes to the discussion of layer interactions, which may lead to un-foreseen performance issues at higher levels of the network stack, and extends it by considering the physical and data link layers for a common form of optical link. The increased risk of errors in future optical networks, and my findings for 8B/10B encoded optical links, demonstrate the need for a cross-layer understanding of error characteristics in such systems. The development of these new networks should take error performance into account in light of the particular requirements of the application in question.The UK Engineering and Physical Sciences Research Council and Marconi Corporation supported my work financially through an Industrial CASE studentship

    An Investigation into the testing and commissioning requirements of IEC 61850 Station Bus Substations

    Get PDF
    The emergence of the new IEC 61850 standard generates a potential to deliver a safe, reliable and effective cost reduction in the way substations are designed and constructed. The IEC 61850 Station Bus systems architecture for a substation protection and automation system is based on a horizontal communication concept replicating what conventional copper wiring performed between Intelligent Electronic Devices (IED’s). The protection and control signals that are traditionally sent and received across a network of copper cables within the substation are now communicated over Ethernet based Local Area Networks (LAN) utilising Generic Object Oriented Substation Event (GOOSE) messages. Implementing a station bus system generates a substantial change to existing design and construction practices. With this significant change, it is critical to develop a methodology for testing and commissioning of protection systems using GOOSE messaging. Analysing current design standards and philosophies established a connection between current conventional practices and future practices using GOOSE messaging at a station bus level. A potential design of the GOOSE messaging protection functions was implemented using the new technology hardware and software. Identification of potential deviations from the design intent, examination of their possible causes and assessment of their consequences was achieved using a Hazard and Operability study (HAZOP). This assessment identified the parts of the intended design that required validating or verifying through the testing and commissioning process. The introduction of a test coverage matrix was developed to identify and optimise the relevant elements, settings, parameters, functions, systems and characteristics that will require validating or verifying through inspection, testing, measurement or simulations during the testing and commissioning process. Research conducted identified hardware and software that would be utilised to validate or verify the IEC 61850 system through inspection, testing, measurement or simulations. The Hazard and Operability study (HAZOP) has been identified as an effective, structured and systematic analysing process that will help identify what hardware, configurations, and functions that require testing and commissioning prior to placing a substation using IEC 61850 Station bus GOOSE messaging into service. This process enables power utilities to understand new challenges and develop testing and commissioning philosophies and quality assurance processes, while providing confidence that the IEC 61850 system will operate in a reliable, effective and secure manner

    Some aspects of a code division multiple access local area network

    Get PDF
    Not Availabl

    A Direct Sequence Code-Division Multiple-Access Local Area Network Model

    Get PDF
    The United States Air Force relies heavily on computer networks for every-day operations. The medium access control (MAC) protocol currently used by most local area (LAN) permits a single station to access the network at a time (e.g. CSMA/CD or Ethernet). This limits network throughput to, at most, the maximum transmission rate of a single node with overhead neglected. Significant delays are observed when a LAN is overloaded by multiple users attempting to access the common medium. In CSMA/CD, collisions are detected and the data sent by the nodes involved are delayed and transmitted at a later time. The retransmission time is determined with a binary exponential back-off-algorithm. Code Division Multiple Access (CDMA) is a technique that increases channel capacity by allowing multiple signals to occupy the same bandwidth simultaneously. Each signal is spread through multiplication with a unique pseudo-random code that distinguishes it from all other signals. Upon reception, the signal of interest is despread and separated from other incoming signals by multiplying it with the same exact code. With this technique, it is possible for multiple stations to transmit simultaneously with minimal ill effects. A simulation model is developed for a direct sequence spread spectrum CDMA (DS/CDMA) channel that incorporates the effects of multiple access interferers (MAI) having spreading codes from the same or different code families. The model introduces cross-correlation coefficients to calculate the signal-to-interference ratio and determine channel bit error performance. Transmission media attenuation and the near-far effects are accounted for in the model design. The model utility is demonstrated by determining the loss characteristics of a coaxial spread spectrum network. Due to the modular design, other transmission media characteristic can be easily incorporated. A bus network topology is simulated using 10Base2 coaxial cable. The model is compared and validated against a spread spectrum local area network hardware test bed
    • …
    corecore