4,140 research outputs found

    Advances in Dynamic Virtualized Cloud Management

    Get PDF
    Cloud computing continues to gain in popularity, with more and more applications being deployed into public and private clouds. Deploying an application in the cloud allows application owners to provision computing resources on-demand, and scale quickly to meet demand. An Infrastructure as a Service (IaaS) cloud provides low-level resources, in the form of virtual machines (VMs), to clients on a pay-per-use basis. The cloud provider (owner) can reduce costs by lowering power consumption. As a typical server can consume 50% or more of its peak power consumption when idle, this can be accomplished by consolidating client VMs onto as few hosts (servers) as possible. This, however, can lead to resource contention, and degraded VM performance. As such, VM placements must be dynamically adapted to meet changing workload demands. We refer to this process as dynamic management. Clients should also take advantage of the cloud environment by scaling their applications up and down (adding and removing VMs) to match current workload demands. This thesis proposes a number of contributions to the field of dynamic cloud management. First, we propose a method of dynamically switching between management strategies at run-time in order to achieve more than one management goal. In order to increase the scalability of dynamic management algorithms, we introduce a distributed version of our management algorithm. We then consider deploying applications which consist of multiple VMs, and automatically scale their deployment to match their workload. We present an integrated management algorithm which handles both dynamic management and application scaling. When dealing with multi-VM applications, the placement of communicating VMs within the data centre topology should be taken into account. To address this consideration, we propose a topology-aware version of our dynamic management algorithm. Finally, we describe a simulation tool, DCSim, which we have developed to help evaluate dynamic management algorithms and techniques

    An Algorithm for Network and Data-aware Placement of Multi-Tier Applications in Cloud Data Centers

    Full text link
    Today's Cloud applications are dominated by composite applications comprising multiple computing and data components with strong communication correlations among them. Although Cloud providers are deploying large number of computing and storage devices to address the ever increasing demand for computing and storage resources, network resource demands are emerging as one of the key areas of performance bottleneck. This paper addresses network-aware placement of virtual components (computing and data) of multi-tier applications in data centers and formally defines the placement as an optimization problem. The simultaneous placement of Virtual Machines and data blocks aims at reducing the network overhead of the data center network infrastructure. A greedy heuristic is proposed for the on-demand application components placement that localizes network traffic in the data center interconnect. Such optimization helps reducing communication overhead in upper layer network switches that will eventually reduce the overall traffic volume across the data center. This, in turn, will help reducing packet transmission delay, increasing network performance, and minimizing the energy consumption of network components. Experimental results demonstrate performance superiority of the proposed algorithm over other approaches where it outperforms the state-of-the-art network-aware application placement algorithm across all performance metrics by reducing the average network cost up to 67% and network usage at core switches up to 84%, as well as increasing the average number of application deployments up to 18%.Comment: Submitted for publication consideration for the Journal of Network and Computer Applications (JNCA). Total page: 28. Number of figures: 15 figure

    SDN-based virtual machine management for cloud data centers

    Get PDF
    Software-Defined Networking (SDN) is an emerging paradigm to logically centralize the network control plane and automate the configuration of individual network elements. At the same time, in Cloud Data Centers (DCs), even though network and server resources converge over the same infrastructure and typically over a single administrative entity, disjoint control mechanisms are used for their respective management. In this paper, we propose a unified server-network control mechanism for converged ICT environments. We present a SDN-based orchestration framework for live Virtual Machine (VM) management where server hypervisors exploit temporal network information to migrate VMs and minimize the network-wide communication cost of the resulting traffic dynamics. A prototype implementation is presented and Mininet is used to evaluate the impact of diverse orchestration algorithms

    Software-Defined Cloud Computing: Architectural Elements and Open Challenges

    Full text link
    The variety of existing cloud services creates a challenge for service providers to enforce reasonable Software Level Agreements (SLA) stating the Quality of Service (QoS) and penalties in case QoS is not achieved. To avoid such penalties at the same time that the infrastructure operates with minimum energy and resource wastage, constant monitoring and adaptation of the infrastructure is needed. We refer to Software-Defined Cloud Computing, or simply Software-Defined Clouds (SDC), as an approach for automating the process of optimal cloud configuration by extending virtualization concept to all resources in a data center. An SDC enables easy reconfiguration and adaptation of physical resources in a cloud infrastructure, to better accommodate the demand on QoS through a software that can describe and manage various aspects comprising the cloud environment. In this paper, we present an architecture for SDCs on data centers with emphasis on mobile cloud applications. We present an evaluation, showcasing the potential of SDC in two use cases-QoS-aware bandwidth allocation and bandwidth-aware, energy-efficient VM placement-and discuss the research challenges and opportunities in this emerging area.Comment: Keynote Paper, 3rd International Conference on Advances in Computing, Communications and Informatics (ICACCI 2014), September 24-27, 2014, Delhi, Indi
    • …
    corecore