237 research outputs found

    Task-based Augmented Contour Trees with Fibonacci Heaps

    Full text link
    This paper presents a new algorithm for the fast, shared memory, multi-core computation of augmented contour trees on triangulations. In contrast to most existing parallel algorithms our technique computes augmented trees, enabling the full extent of contour tree based applications including data segmentation. Our approach completely revisits the traditional, sequential contour tree algorithm to re-formulate all the steps of the computation as a set of independent local tasks. This includes a new computation procedure based on Fibonacci heaps for the join and split trees, two intermediate data structures used to compute the contour tree, whose constructions are efficiently carried out concurrently thanks to the dynamic scheduling of task parallelism. We also introduce a new parallel algorithm for the combination of these two trees into the output global contour tree. Overall, this results in superior time performance in practice, both in sequential and in parallel thanks to the OpenMP task runtime. We report performance numbers that compare our approach to reference sequential and multi-threaded implementations for the computation of augmented merge and contour trees. These experiments demonstrate the run-time efficiency of our approach and its scalability on common workstations. We demonstrate the utility of our approach in data segmentation applications

    A Comparative Study of the Perceptual Sensitivity of Topological Visualizations to Feature Variations

    Full text link
    Color maps are a commonly used visualization technique in which data are mapped to optical properties, e.g., color or opacity. Color maps, however, do not explicitly convey structures (e.g., positions and scale of features) within data. Topology-based visualizations reveal and explicitly communicate structures underlying data. Although we have a good understanding of what types of features are captured by topological visualizations, our understanding of people's perception of those features is not. This paper evaluates the sensitivity of topology-based isocontour, Reeb graph, and persistence diagram visualizations compared to a reference color map visualization for synthetically generated scalar fields on 2-manifold triangular meshes embedded in 3D. In particular, we built and ran a human-subject study that evaluated the perception of data features characterized by Gaussian signals and measured how effectively each visualization technique portrays variations of data features arising from the position and amplitude variation of a mixture of Gaussians. For positional feature variations, the results showed that only the Reeb graph visualization had high sensitivity. For amplitude feature variations, persistence diagrams and color maps demonstrated the highest sensitivity, whereas isocontours showed only weak sensitivity. These results take an important step toward understanding which topology-based tools are best for various data and task scenarios and their effectiveness in conveying topological variations as compared to conventional color mapping

    Surface networks

    Get PDF
    © Copyright CASA, UCL. The desire to understand and exploit the structure of continuous surfaces is common to researchers in a range of disciplines. Few examples of the varied surfaces forming an integral part of modern subjects include terrain, population density, surface atmospheric pressure, physico-chemical surfaces, computer graphics, and metrological surfaces. The focus of the work here is a group of data structures called Surface Networks, which abstract 2-dimensional surfaces by storing only the most important (also called fundamental, critical or surface-specific) points and lines in the surfaces. Surface networks are intelligent and “natural ” data structures because they store a surface as a framework of “surface ” elements unlike the DEM or TIN data structures. This report presents an overview of the previous works and the ideas being developed by the authors of this report. The research on surface networks has fou

    Task-based Augmented Reeb Graphs with Dynamic ST-Trees

    Get PDF
    International audienceThis paper presents, to the best of our knowledge, the first parallel algorithm for the computation of the augmented Reeb graph of piecewise linear scalar data. Such augmented Reeb graphs have a wide range of applications , including contour seeding and feature based segmentation. Our approach targets shared-memory multi-core workstations. For this, it completely revisits the optimal, but sequential, Reeb graph algorithm, which is capable of handing data in arbitrary dimension and with optimal time complexity. We take advantage of Fibonacci heaps to exploit the ST-Tree data structure through independent local propagations, while maintaining the optimal, linearithmic time complexity of the sequential reference algorithm. These independent propagations can be expressed using OpenMP tasks, hence benefiting in parallel from the dynamic load balancing of the task runtime while enabling us to increase the parallelism degree thanks to a dual sweep. We present performance results on triangulated surfaces and tetrahedral meshes. We provide comparisons to related work and show that our new algorithm results in superior time performance in practice, both in sequential and in parallel. An open-source C++ implementation is provided for reproducibility

    Lifted Wasserstein Matcher for Fast and Robust Topology Tracking

    Full text link
    This paper presents a robust and efficient method for tracking topological features in time-varying scalar data. Structures are tracked based on the optimal matching between persistence diagrams with respect to the Wasserstein metric. This fundamentally relies on solving the assignment problem, a special case of optimal transport, for all consecutive timesteps. Our approach relies on two main contributions. First, we revisit the seminal assignment algorithm by Kuhn and Munkres which we specifically adapt to the problem of matching persistence diagrams in an efficient way. Second, we propose an extension of the Wasserstein metric that significantly improves the geometrical stability of the matching of domain-embedded persistence pairs. We show that this geometrical lifting has the additional positive side-effect of improving the assignment matrix sparsity and therefore computing time. The global framework implements a coarse-grained parallelism by computing persistence diagrams and finding optimal matchings in parallel for every couple of consecutive timesteps. Critical trajectories are constructed by associating successively matched persistence pairs over time. Merging and splitting events are detected with a geometrical threshold in a post-processing stage. Extensive experiments on real-life datasets show that our matching approach is an order of magnitude faster than the seminal Munkres algorithm. Moreover, compared to a modern approximation method, our method provides competitive runtimes while yielding exact results. We demonstrate the utility of our global framework by extracting critical point trajectories from various simulated time-varying datasets and compare it to the existing methods based on associated overlaps of volumes. Robustness to noise and temporal resolution downsampling is empirically demonstrated

    Semi-automatic transfer function generation for volumetric data visualization using contour tree analyses

    Get PDF

    Ranking Viscous Finger Simulations to an Acquired Ground Truth with Topology-aware Matchings

    Get PDF
    International audienceThis application paper presents a novel framework based on topological data analysis for the automatic evaluation and ranking of viscous finger simulation runs in an ensemble with respect to a reference acquisition. Individual fingers in a given time-step are associated with critical point pairs in the distance field to the injection point, forming persistence diagrams. Different metrics, based on optimal transport, for comparing time-varying persistence diagrams in this specific applicative case are introduced. We evaluate the relevance of the rankings obtained with these metrics, both qualitatively thanks to a lightweight web visual interface, and quantitatively by studying the deviation from a reference ranking suggested by experts. Extensive experiments show the quantitative superiority of our approach compared to traditional alternatives. Our web interface allows experts to conveniently explore the produced rankings. We show a complete viscous fingering case study demonstrating the utility of our approach in the context of porous media fluid flow, where our framework can be used to automatically discard physically-irrelevant simulation runs from the ensemble and rank the most plausible ones. We document an in-situ implementation to lighten I/O and performance constraints arising in the context of parametric studies
    • 

    corecore