227 research outputs found

    Topology Alteration for Virtual Sculpting using Spatial Deformation

    Get PDF
    Virtual Sculpting enables the creation of computer models by emulating traditional sculpting. It can be implemented using spatial deformation, an interactive versatile modelling technique. Unfortunately, spatial deformation is limited to topology preserving warping. This is overcome by space-time objects, a variant of spatial deformation, which alters topology by extruding an object into 4-D, deforming the 4-D object and extracting a topologically altered object. However, they are specifically targeted to animation. In this paper, we adapt space-time objects to interactive modelling by: employing a tetrahedral rather than parallelepiped representation; exploiting coherence during the constant projection into four dimensions; and limiting projection to the portions of an object undergoing topology changes and thereby producing simpler triangulations of undeformed regions. Each of these adaptations is discussed in the context of the space-time object stages: extrusion, deformation and extraction. We also present preliminary results demonstrating the efficiency of our improvements

    A Survey of Spatial Deformation from a User-Centered Perspective

    Get PDF
    The spatial deformation methods are a family of modeling and animation techniques for indirectly reshaping an object by warping the surrounding space, with results that are similar to molding a highly malleable substance. They have the virtue of being computationally efficient (and hence interactive) and applicable to a variety of object representations. In this paper we survey the state of the art in spatial deformation. Since manipulating ambient space directly is infeasible, deformations are controlled by tools of varying dimension - points, curves, surfaces and volumes - and it is on this basis that we classify them. Unlike previous surveys that concentrate on providing a single underlying mathematical formalism, we use the user-centered criteria of versatility, ease of use, efficiency and correctness to compare techniques

    Virtual sculpting : an investigation of directly manipulated free-form deformation in a virtual environment

    Get PDF
    This thesis presents a Virtual Sculpting system, which addresses the problem of Free-Form Solid Modelling. The disparate elements of a Polygon-Mesh representation, a Directly Manipulated Free-Form Deformation sculpting tool, and a Virtual Environment are drawn into a cohesive whole under the mantle of a clay-sculpting metaphor. This enables a user to mould and manipulate a synthetic solid interactively as if it were composed of malleable clay. The focus of this study is on the interactivity, intuitivity and versatility of such a system. To this end, a range of improvements is investigated which significantly enhances the efficiency and correctness of Directly Manipulated Free-Form Deformation, both separately and as a seamless component of the Virtual Sculpting system

    Form giving through gestural interaction to shape changing objects

    Get PDF
    Thesis (S.M.)--Massachusetts Institute of Technology, School of Architecture and Planning, Program in Media Arts and Sciences, 2012.Cataloged from PDF version of thesis.Includes bibliographical references.Shape-shifting materials have been part of sci-fi literature for decades. But if tomorrow we invent them, how are we going to communicate to them what shape we want them to morph into? If we look at our history, for thousands of years humans have been using the dexterity of their hands as primary means to alter the topology of their surroundings. While direct manipulation, as a primary method for form giving, allows for high precision deformation, the scope of interaction is limited to the scale of the hand. In order to extend the scope of manipulation beyond the hand scale, tools were invented to reach further and to augment the capabilities of our hands. In this thesis, I propose "Amphorm", a perceptually equivalent example of Radical Atoms, our vision on the interaction techniques for future, highly malleable, shape-shifting materials. "Amphorm" is a cylindrical kinetic sculpture that resembles a vase. Since "Amphorm" is a dual citizen between the digital and the physical world, its shape can be altered in both worlds. I describe novel interaction techniques for rapid shape deformation both in the physical world through free hand gestures and in the digital world through a Graphical User Interface. Additionally I explore how the physical world could be synchronized with the digital world and how tools from both worlds can jointly alter dual-citizens.by Dávid Lakatos.S.M

    Model driven segmentation and the detection of bone fractures

    Get PDF
    Bibliography: leaves 83-90.The introduction of lower dosage image acquisition devices and the increase in computational power means that there is an increased focus on producing diagnostic aids for the medical trauma environment. The focus of this research is to explore whether geometric criteria can be used to detect bone fractures from Computed Tomography data. Conventional image processing of CT data is aimed at the production of simple iso-surfaces for surgical planning or diagnosis - such methods are not suitable for the automated detection of fractures. Our hypothesis is that through a model-based technique a triangulated surface representing the bone can be speedily and accurately produced. And, that there is sufficient structural information present that by examining the geometric structure of this representation we can accurately detect bone fractures. In this dissertation we describe the algorithms and framework that we built to facilitate the detection of bone fractures and evaluate the validity of our approach

    Haptic interaction with deformable objects using real-time dynamic simulation

    Get PDF
    Thesis (M.S.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering, 1995.Includes bibliographical references (p. 81-83).by Nitish Swarup.M.S

    Deformable Simplicial Complexes

    Get PDF
    In this dissertation we present a novel method for deformable interface tracking in 2D and 3D|deformable simplicial complexes (DSC). Deformable interfaces are used in several applications, such as fluid simulation, image analysis, reconstruction or structural optimization. In the DSC method, the interface (curve in 2D; surface in 3D) is represented explicitly as a piecewise linear curve or surface. However, the domain is also subject to discretization: triangulation in 2D; tetrahedralization in 3D. This way, the interface can be alternatively represented as a set of edges/triangles separating triangles/tetrahedra marked as outside from those marked as inside. Such an approach allows for robust topological adaptivity. Among other advantages of the deformable simplicial complexes there are: space adaptivity, ability to handle and preserve sharp features, possibility for topology control. We demonstrate those strengths in several applications. In particular, a novel, DSC-based fluid dynamics solver has been developed during the PhD project. A special feature of this solver is that due to the fact that DSC maintains an explicit interface representation, surface tension is more easily dealt with. One particular advantage of DSC is the fact that as an alternative to topology adaptivity, topology control is also possible. This is exploited in the construction of cut loci on tori where a front expands from a single point on a torus and stops when it self-intersects

    Embodied gestures

    Get PDF
    This is a book about musical gestures: multiple ways to design instruments, compose musical performances, analyze sound objects and represent sonic ideas through the central notion of ‘gesture’. The writers share knowledge on major research projects, musical compositions and methodological tools developed among different disciplines, such as sound art, embodied music cognition, human-computer interaction, performative studies and artificial intelligence. They visualize how similar and compatible are the notions of embodied music cognition and the artistic discourses proposed by musicians working with ‘gesture’ as their compositional material. The authors and editors hope to contribute to the ongoing discussion around creative technologies and music, expressive musical interface design, the debate around the use of AI technology in music practice, as well as presenting a new way of thinking about musical instruments, composing and performing with them

    Embodied gestures

    Get PDF
    This is a book about musical gestures: multiple ways to design instruments, compose musical performances, analyze sound objects and represent sonic ideas through the central notion of ‘gesture’. The writers share knowledge on major research projects, musical compositions and methodological tools developed among different disciplines, such as sound art, embodied music cognition, human-computer interaction, performative studies and artificial intelligence. They visualize how similar and compatible are the notions of embodied music cognition and the artistic discourses proposed by musicians working with ‘gesture’ as their compositional material. The authors and editors hope to contribute to the ongoing discussion around creative technologies and music, expressive musical interface design, the debate around the use of AI technology in music practice, as well as presenting a new way of thinking about musical instruments, composing and performing with them

    3-D Interfaces for Spatial Construction

    Get PDF
    It is becoming increasingly easy to bring the body directly to digital form via stereoscopic immersive displays and tracked input devices. Is this space a viable one in which to construct 3d objects? Interfaces built upon two-dimensional displays and 2d input devices are the current standard for spatial construction, yet 3d interfaces, where the dimensionality of the interactive space matches that of the design space, have something unique to offer. This work increases the richness of 3d interfaces by bringing several new tools into the picture: the hand is used directly to trace surfaces; tangible tongs grab, stretch, and rotate shapes; a handle becomes a lightsaber and a tool for dropping simple objects; and a raygun, analagous to the mouse, is used to select distant things. With these tools, a richer 3d interface is constructed in which a variety of objects are created by novice users with relative ease. What we see is a space, not exactly like the traditional 2d computer, but rather one in which a distinct and different set of operations is easy and natural. Design studies, complemented by user studies, explore the larger space of three-dimensional input possibilities. The target applications are spatial arrangement, freeform shape construction, and molecular design. New possibilities for spatial construction develop alongside particular nuances of input devices and the interactions they support. Task-specific tangible controllers provide a cultural affordance which links input devices to deep histories of tool use, enhancing intuition and affective connection within an interface. On a more practical, but still emotional level, these input devices frame kinesthetic space, resulting in high-bandwidth interactions where large amounts of data can be comfortably and quickly communicated. A crucial issue with this interface approach is the tension between specific and generic input devices. Generic devices are the tradition in computing -- versatile, remappable, frequently bereft of culture or relevance to the task at hand. Specific interfaces are an emerging trend -- customized, culturally rich, to date these systems have been tightly linked to a single application, limiting their widespread use. The theoretical heart of this thesis, and its chief contribution to interface research at large is an approach to customization. Instead of matching an application domain's data, each new input device supports a functional class. The spatial construction task is split into four types of manipulation: grabbing, pointing, holding, and rubbing. Each of these action classes spans the space of spatial construction, allowing a single tool to be used in many settings without losing the unique strengths of its specific form. Outside of 3d interface, outside of spatial construction, this approach strikes a balance between generic and specific suitable for many interface scenarios. In practice, these specific function groups are given versatility via a quick remapping technique which allows one physical tool to perform many digital tasks. For example, the handle can be quickly remapped from a lightsaber that cuts shapes to tools that place simple platonic solids, erase portions of objects, and draw double-helices in space. The contributions of this work lie both in a theoretical model of spatial interaction, and input devices (combined with new interactions) which illustrate the efficacy of this philosophy. This research brings the new results of Tangible User Interface to the field of Virtual Reality. We find a space, in and around the hand, where full-fledged haptics are not necessary for users physically connect with digital form.</p
    • …
    corecore