2,803 research outputs found

    Simulation results of a 1 kW photovoltaic system with MPPT function in the inverter

    Get PDF
    Photovoltaic pumping systems are commonly used in remote regions, where the access to electrical energy is difficult or very expensive. This paper presents simulation results of a 1 kW photovoltaic system proposed in a cascade topology, consisting of a DC-DC boost converter followed by a single-phase inverter. The Maximum Power Point Tracking (MPPT) function is performed by the inverter, instead of by the DC-DC converter, as usually is done. The MPPT function uses an Incremental Conductance algorithm. This paper presents simulation results, in steady state and transient conditions, for the proposed photovoltaic system operating in different circumstances, which in real facilities can be caused by solar radiation variations.FEDER Funds - Operational Program for Competitiveness Factors (COMPETE), FCOMP-01-0124-FEDER-022674 and the project PTDC/EEA-EEL/104569/2008.Fundação para a Ciência e a Tecnologia (FCT) - FCOMP-01-0124-FEDER-022674, PTDC/EEA-EEL/104569/2008

    Design and implementation of a dual-input single-output photovoltaic converter

    Get PDF
    In many solar inverters, a dc/dc converter is mainly located between the solar arrays and the inverter. This study presents an enhanced maximum power point tracking (MPPT) algorithm for photovoltaic (PV) systems that drives solar array voltages to track a reference value and decreases fluctuations and oscillations in PV voltage. Different from the previously presented methods, a novel MPPT method is proposed that ensures tracking accuracy by considering output voltage in addition to input voltage and currents. The proposed method detects dI/dV variations, compares the output voltage with the desired reference to shift operation mode and refreshes step size. The digital filtering, enhanced PI, and perturb-and-observe (P&O) tracking features of the proposed MPPT method make it robust to mitigate source fluctuations and sensitivity to partial shading based oscillations. In order to validate the success of the proposed method, a test rig has been installed with dual boost converters. The performance improvements have been verified by both simulation and experimental results that are compared to InCon and P&O MPPT methods. It is also confirmed by experimental results that the proposed MPPT method provides robust control capability in terms of tracking the reference voltage and rejecting the effects of various shading situations on solar arrays

    Maximum power point tracking and control of grid interfacing PV systems

    Get PDF
    Grid interfacing of PV systems is very crucial for their future deployment. To address some drawbacks of model-based maximum power point tracking (MPPT) techniques, new optimum proportionality constant values based on the variation of temperature and irradiance are proposed for fractional open circuit voltage (FOCV) and fraction short circuit current (FSCC) MPPT. The two MPPT controllers return their optimum proportionality values to gain high tracking efficiency when a change occurred to temperature and/or irradiance. A modified variable step-size incremental conductance MPPT technique for PV system is proposed. In the new MPPT technique, a new autonomous scaling factor based on the PV module voltage in a restricted search range to replace the fixed scaling factor in the conventional variable step-size algorithm is proposed. Additionally, a slope angle variation algorithm is also developed. The proposed MPPT technique demonstrates faster tracking speed with minimum oscillations around MPP both at steady-state and dynamic conditions with overall efficiency of about 99.70%. The merits of the proposed MPPT technique are verified using simulation and practical experimentation. A new 0.8Voc model technique to estimate the peak global voltage under partial shading condition for medium voltage megawatt photovoltaic system integration is proposed. The proposed technique consists of two main components; namely, peak voltage and peak voltage deviation correction factor. The proposed 0.8Voc model is validated by using MATLAB simulation. The results show high tracking efficiency with minimum deviations compared to the conventional counterpart. The efficiency of the conventional 0.8 model is about 93% while that of the proposed is 99.6%. Control issues confronting grid interfacing PV system is investigated. The proposed modified 0.8Voc model is utilized to optimise the active power level in the grid interfacing of multimegawatt photovoltaic system under normal and partial shading conditions. The active power from the PV arrays is 5 MW, while the injected power into the ac is 4.73 MW, which represents 95% of the PV arrays power at normal condition. Similarly, during partial shading conditions, the active power of PV module is 2 MW and the injected power is 1.89 MW, which represents 95% of PV array power at partial shading conditions. The technique demonstrated the capability of saving high amount of grid power.Grid interfacing of PV systems is very crucial for their future deployment. To address some drawbacks of model-based maximum power point tracking (MPPT) techniques, new optimum proportionality constant values based on the variation of temperature and irradiance are proposed for fractional open circuit voltage (FOCV) and fraction short circuit current (FSCC) MPPT. The two MPPT controllers return their optimum proportionality values to gain high tracking efficiency when a change occurred to temperature and/or irradiance. A modified variable step-size incremental conductance MPPT technique for PV system is proposed. In the new MPPT technique, a new autonomous scaling factor based on the PV module voltage in a restricted search range to replace the fixed scaling factor in the conventional variable step-size algorithm is proposed. Additionally, a slope angle variation algorithm is also developed. The proposed MPPT technique demonstrates faster tracking speed with minimum oscillations around MPP both at steady-state and dynamic conditions with overall efficiency of about 99.70%. The merits of the proposed MPPT technique are verified using simulation and practical experimentation. A new 0.8Voc model technique to estimate the peak global voltage under partial shading condition for medium voltage megawatt photovoltaic system integration is proposed. The proposed technique consists of two main components; namely, peak voltage and peak voltage deviation correction factor. The proposed 0.8Voc model is validated by using MATLAB simulation. The results show high tracking efficiency with minimum deviations compared to the conventional counterpart. The efficiency of the conventional 0.8 model is about 93% while that of the proposed is 99.6%. Control issues confronting grid interfacing PV system is investigated. The proposed modified 0.8Voc model is utilized to optimise the active power level in the grid interfacing of multimegawatt photovoltaic system under normal and partial shading conditions. The active power from the PV arrays is 5 MW, while the injected power into the ac is 4.73 MW, which represents 95% of the PV arrays power at normal condition. Similarly, during partial shading conditions, the active power of PV module is 2 MW and the injected power is 1.89 MW, which represents 95% of PV array power at partial shading conditions. The technique demonstrated the capability of saving high amount of grid power
    corecore