32 research outputs found

    Effect of Black Hole Attack on MANET Routing Protocols

    Full text link

    Nascom System Development Plan: System Description, Capabilities and Plans

    Get PDF
    The NASA Communications (Nascom) System Development Plan (NSDP), reissued annually, describes the organization of Nascom, how it obtains communication services, its current systems, its relationship with other NASA centers and International Partner Agencies, some major spaceflight projects which generate significant operational communication support requirements, and major Nascom projects in various stages of development or implementation

    Air Force Institute of Technology Research Report 2010

    Get PDF
    This report summarizes the research activities of the Air Force Institute of Technology’s Graduate School of Engineering and Management. It describes research interests and faculty expertise; lists student theses/dissertations; identifies research sponsors and contributions; and outlines the procedures for contacting the school. Included in the report are: faculty publications, conference presentations, consultations, and funded research projects. Research was conducted in the areas of Aeronautical and Astronautical Engineering, Electrical Engineering and Electro-Optics, Computer Engineering and Computer Science, Systems and Engineering Management, Operational Sciences, Mathematics, Statistics and Engineering Physic

    Proceedings of the Mobile Satellite Conference

    Get PDF
    A satellite-based mobile communications system provides voice and data communications to mobile users over a vast geographic area. The technical and service characteristics of mobile satellite systems (MSSs) are presented and form an in-depth view of the current MSS status at the system and subsystem levels. Major emphasis is placed on developments, current and future, in the following critical MSS technology areas: vehicle antennas, networking, modulation and coding, speech compression, channel characterization, space segment technology and MSS experiments. Also, the mobile satellite communications needs of government agencies are addressed, as is the MSS potential to fulfill them

    Error Control for Multicasting in Satellite and Hybrid Communication Networks

    Get PDF
    A problem inherent in ARQ multicasting over a broadcast channel is thata retransmission typically benefits only a minority of destinationswhile all others wait unproductively. This results in poorthroughput to each receiving station in the network, with thethroughput diminishing as the number of receivers grows.If point-to-point links between the transmitter and each receiver werealso available, then conceivably retransmissions could be sent over suchsecondary links. This would reduce the frequency of retransmissionsinterrupting the flow of new packets on the broadcast link. That is,a hybrid satellite-terrestrial network architecture would allowgreater throughput for multicasting than a pure-satellite network.This work examines ARQ multicasting in such a network, and confirms byanalysis and simulation that, within limits, such a throughput advantagecan be realized. A detailed discussion of implementation aspects forpoint-to-point and point-to-multipoint ARQ protocols in bothpure-satellite and hybrid networks is presented as well. This work alsoconsiders partitioning a fixed amount of bandwidth to maximize throughput,possibly subject to a cost constraint, and the effect of a "poorlistener" upon performance in both pure-satellite and hybrid networks.<p

    Proceedings of the Third International Mobile Satellite Conference (IMSC 1993)

    Get PDF
    Satellite-based mobile communications systems provide voice and data communications to users over a vast geographic area. The users may communicate via mobile or hand-held terminals, which may also provide access to terrestrial cellular communications services. While the first and second International Mobile Satellite Conferences (IMSC) mostly concentrated on technical advances, this Third IMSC also focuses on the increasing worldwide commercial activities in Mobile Satellite Services. Because of the large service areas provided by such systems, it is important to consider political and regulatory issues in addition to technical and user requirements issues. Topics covered include: the direct broadcast of audio programming from satellites; spacecraft technology; regulatory and policy considerations; advanced system concepts and analysis; propagation; and user requirements and applications

    Advances on Mechanics, Design Engineering and Manufacturing III

    Get PDF
    This open access book gathers contributions presented at the International Joint Conference on Mechanics, Design Engineering and Advanced Manufacturing (JCM 2020), held as a web conference on June 2–4, 2020. It reports on cutting-edge topics in product design and manufacturing, such as industrial methods for integrated product and process design; innovative design; and computer-aided design. Further topics covered include virtual simulation and reverse engineering; additive manufacturing; product manufacturing; engineering methods in medicine and education; representation techniques; and nautical, aeronautics and aerospace design and modeling. The book is organized into four main parts, reflecting the focus and primary themes of the conference. The contributions presented here not only provide researchers, engineers and experts in a range of industrial engineering subfields with extensive information to support their daily work; they are also intended to stimulate new research directions, advanced applications of the methods discussed and future interdisciplinary collaborations

    Research and Technology, 1998

    Get PDF
    This report selectively summarizes the NASA Lewis Research Center's research and technology accomplishments for the fiscal year 1998. It comprises 134 short articles submitted by the staff scientists and engineers. The report is organized into five major sections: Aeronautics, Research and Technology, Space, Engineering and Technical Services, and Commercial Technology. A table of contents and an author index have been developed to assist readers in finding articles of special interest. This report is not intended to he a comprehensive summary of all the research and technology work done over the past fiscal year. Most of the work is reported in Lewis-published technical reports, journal articles, and presentations prepared by Lewis staff and contractors. In addition, university grants have enabled faculty members and graduate students to engage in sponsored research that is reported at technical meetings or in journal articles. For each article in this report, a Lewis contact person has been identified, and where possible, reference documents are listed so that additional information can be easily obtained. The diversity of topics attests to the breadth of research and technology being pursued and to the skill mix of the staff that makes it possible. At the time of publication, NASA Lewis was undergoing a name change to the NASA John H. Glenn Research Center at Lewis Field

    Introduction to modern instrumentation: for hydraulics and environmental sciences

    Get PDF
    Preface Natural hazards and anthropic activities threaten the quality of the environment surrounding the human being, risking life and health. Among the different actions that must be taken to control the quality of the environment, the gathering of field data is a basic one. In order to obtain the needed data for environmental research, a great variety of new instruments based on electronics is used by professionals and researchers. Sometimes, the potentials and limitations of this new instrumentation remain somewhat unknown to the possible users. In order to better utilize modern instruments it is very important to understand how they work, avoiding misinterpretation of results. All instrument operators must gain proper insight into the working principles of their tools, because this internal view permits them to judge whether the instrument is appropriately selected and adequately functioning. Frequently, manufacturers have a tendency to show the great performances of their products without advising their customers that some characteristics are mutually exclusive. Car manufacturers usually show the maximum velocity that a model can reach and also the minimum fuel consumption. It is obvious for the buyer that both performances are mutually exclusive, but it is not so clear for buyers of measuring instruments. This book attempts to make clear some performances that are not easy to understand to those uninitiated in the utilization of electronic instruments. Technological changes that have occurred in the last few decades are not yet reflected in academic literature and courses; this material is the result of a course prepared with the purpose of reducing this shortage. The content of this book is intended for students of hydrology, hydraulics, oceanography, meteorology and environmental sciences. Most of the new instruments presented in the book are based on electronics, special physics principles and signal processing; therefore, basic concepts on these subjects are introduced in the first chapters (Chapters 1 to 3) with the hope that they serve as a complete, yet easy-to-digest beginning. Because of this review of concepts it is not necessary that the reader have previous information on electronics, electricity or particular physical principles to understand the topics developed later. Those readers with a solid understanding of these subjects could skip these chapters; however they are included because some students could find them as a useful synthesis. Chapter 4 is completely dedicated to the description of transducers and sensors frequently used in environmental sciences. It is described how electrical devices are modified by external parameters in order to become sensors. Also an introduction to oscillators is presented because they are used in most instruments. In the next chapters all the information presented here is recurrently referred to as needed to explain operating principles of instruments. Unauthenticated Download Date | 10/12/14 9:29 PM VIII Preface Chapters 1 to 4 are bitter pills that could discourage readers interested in the description of specific instruments. Perhaps, those readers trying this book from the beginning could abandon it before arriving at the most interesting chapters. Therefore, they could read directly Chapters 5 to 11, going back as they feel that they need the knowledge of the previous chapters. We intended to make clear all the references to the previous subjects needed to understand each one of the issues developed in the later chapters. Chapter 5 contributes to the understanding of modern instrumentation to measure flow in industrial and field conditions. Traditional mechanical meters are avoided to focus the attention on electronic ones, such as vortex, electromagnetic, acoustic, thermal, and Coriolis flowmeters. Special attention is dedicated to acoustic Doppler current profilers and acoustic Doppler velocimeters. Chapter 6 deals with two great subjects; the first is devoted to instruments for measuring dynamic and quasi static levels in liquids, mainly water. Methods to measure waves at sea and in the laboratory are explained, as well as instruments to measure slow changes such as tides or piezometric heads for hydrologic applications. The second subject includes groundwater measurement methods with emphasis on very low velocity flowmeters which measure velocity from inside a single borehole. Most of them are relatively new methods and some are based on operating principles described in the previous chapter. Seepage meters used to measure submarine groundwater discharge are also presented. Chapter 7 presents methods and instruments for measuring rain, wind and solar radiation. Even though the attention is centered on new methods, some traditional methods are described not only because they are still in use, and it is not yet clear if the new technologies will definitely replace them, but also because describing them permits their limitations and drawbacks to be better understood. Methods to measure solar radiation are described from radiation detectors to complete instruments for total radiation and radiation spectrum measurements. Chapter 8 is a long chapter where we have tried to include most remote measuring systems useful for environmental studies. It begins with a technique called DTS (Distributed Temperature Sensing) that has the particularity of being remote, but where the electromagnetic wave propagates inside a fibre optic. The chapter follows with atmosphere wind profilers using acoustic and electromagnetic waves. Radio acoustic sounding systems used to get atmospheric temperature profiles are explained in detail as well as weather radar. Methods for ocean surface currents monitoring are also introduced. The chapter ends with ground penetrating radars. Chapter 9 is an introduction to digital transmission and storage of information. This subject has been reduced to applications where information collected by field instruments has to be conveyed to a central station where it is processed and stored. Some insight into networks of instruments is developed; we think this information will help readers to select which method to use to transport information from field to office, by means of such diverse communication media as fibre optic, digital telephony, Unauthenticated Download Date | 10/12/14 9:29 PM Preface IX GSM (Global System for Mobile communications), satellite communications and private radio frequency links. Chapter 10 is devoted to satellite-based remote sensing. Introductory concepts such as image resolution and instrument?s scanning geometry are developed before describing how passive instruments estimate some meteorological parameters. Active instruments are presented in general, but the on-board data processing is emphasized due to its importance in the quality of the measurements. Hence, concepts like Synthetic Aperture Radar (SAR) and Chirp Radar are developed in detail. Scatterometers, altimeters and Lidar are described as applications of the on-board instruments to environmental sciences. Chapter 11 attempts to transfer some experiences in field measuring to the readers. A pair of case studies is included to encourage students to perform tests on the instruments before using them. In this chapter we try to condense our ideas, most of them already expressed throughout the book, about the attitude a researcher should have with modern instruments before and after a measuring field work. As can be inferred from the foregoing description the book aims to provide students with the necessary tools to adequately select and use instruments for environmental monitoring. Several examples are introduced to advise future professionals and researchers on how to measure properly, so as to make sure that the data recorded by the instruments actually represents the parameters they intend to know. With this purpose, instruments are explained in detail so that their measuring limitations are recognized. Within the entire work it is underlined how spatial and temporal scales, inherent to the instruments, condition the collection of data. Informal language and qualitative explanations are used, but enough mathematical fundamentals are given to allow the reader to reach a good quantitative knowledge. It is clear from the title of the book that it is a basic tool to introduce students to modern instrumentation; it is not intended for formed researchers with specific interests. However, general ideas on some measuring methods and on data acquisition concepts could be useful to them before buying an instrument or selecting a measuring method. Those readers interested in applying some particular method or instrument described in this book should consider these explanations just as an introduction to the subject; they will need to dig deeper in the specific bibliography before putting hands on.Fil: Guaraglia, Dardo Oscar. Universidad Nacional de la Plata. Facultad de Ingeniería. Departamento de Hidraulica. Area Hidraulica Basica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; ArgentinaFil: Pousa, Jorge Lorenzo. Universidad Nacional de La Plata. Facultad de Ciencias Naturales y Museo. Laboratorio de Oceanografía Costera y Estuarios; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; Argentin
    corecore