7,620 research outputs found

    Decomposable Principal Component Analysis

    Full text link
    We consider principal component analysis (PCA) in decomposable Gaussian graphical models. We exploit the prior information in these models in order to distribute its computation. For this purpose, we reformulate the problem in the sparse inverse covariance (concentration) domain and solve the global eigenvalue problem using a sequence of local eigenvalue problems in each of the cliques of the decomposable graph. We demonstrate the application of our methodology in the context of decentralized anomaly detection in the Abilene backbone network. Based on the topology of the network, we propose an approximate statistical graphical model and distribute the computation of PCA

    Magnification Control in Self-Organizing Maps and Neural Gas

    Get PDF
    We consider different ways to control the magnification in self-organizing maps (SOM) and neural gas (NG). Starting from early approaches of magnification control in vector quantization, we then concentrate on different approaches for SOM and NG. We show that three structurally similar approaches can be applied to both algorithms: localized learning, concave-convex learning, and winner relaxing learning. Thereby, the approach of concave-convex learning in SOM is extended to a more general description, whereas the concave-convex learning for NG is new. In general, the control mechanisms generate only slightly different behavior comparing both neural algorithms. However, we emphasize that the NG results are valid for any data dimension, whereas in the SOM case the results hold only for the one-dimensional case.Comment: 24 pages, 4 figure

    An Emergent Space for Distributed Data with Hidden Internal Order through Manifold Learning

    Full text link
    Manifold-learning techniques are routinely used in mining complex spatiotemporal data to extract useful, parsimonious data representations/parametrizations; these are, in turn, useful in nonlinear model identification tasks. We focus here on the case of time series data that can ultimately be modelled as a spatially distributed system (e.g. a partial differential equation, PDE), but where we do not know the space in which this PDE should be formulated. Hence, even the spatial coordinates for the distributed system themselves need to be identified - to emerge from - the data mining process. We will first validate this emergent space reconstruction for time series sampled without space labels in known PDEs; this brings up the issue of observability of physical space from temporal observation data, and the transition from spatially resolved to lumped (order-parameter-based) representations by tuning the scale of the data mining kernels. We will then present actual emergent space discovery illustrations. Our illustrative examples include chimera states (states of coexisting coherent and incoherent dynamics), and chaotic as well as quasiperiodic spatiotemporal dynamics, arising in partial differential equations and/or in heterogeneous networks. We also discuss how data-driven spatial coordinates can be extracted in ways invariant to the nature of the measuring instrument. Such gauge-invariant data mining can go beyond the fusion of heterogeneous observations of the same system, to the possible matching of apparently different systems

    Magnification Control in Winner Relaxing Neural Gas

    Get PDF
    An important goal in neural map learning, which can conveniently be accomplished by magnification control, is to achieve information optimal coding in the sense of information theory. In the present contribution we consider the winner relaxing approach for the neural gas network. Originally, winner relaxing learning is a slight modification of the self-organizing map learning rule that allows for adjustment of the magnification behavior by an a priori chosen control parameter. We transfer this approach to the neural gas algorithm. The magnification exponent can be calculated analytically for arbitrary dimension from a continuum theory, and the entropy of the resulting map is studied numerically conf irming the theoretical prediction. The influence of a diagonal term, which can be added without impacting the magnification, is studied numerically. This approach to maps of maximal mutual information is interesting for applications as the winner relaxing term only adds computational cost of same order and is easy to implement. In particular, it is not necessary to estimate the generally unknown data probability density as in other magnification control approaches.Comment: 14pages, 2 figure

    Geometric deep learning: going beyond Euclidean data

    Get PDF
    Many scientific fields study data with an underlying structure that is a non-Euclidean space. Some examples include social networks in computational social sciences, sensor networks in communications, functional networks in brain imaging, regulatory networks in genetics, and meshed surfaces in computer graphics. In many applications, such geometric data are large and complex (in the case of social networks, on the scale of billions), and are natural targets for machine learning techniques. In particular, we would like to use deep neural networks, which have recently proven to be powerful tools for a broad range of problems from computer vision, natural language processing, and audio analysis. However, these tools have been most successful on data with an underlying Euclidean or grid-like structure, and in cases where the invariances of these structures are built into networks used to model them. Geometric deep learning is an umbrella term for emerging techniques attempting to generalize (structured) deep neural models to non-Euclidean domains such as graphs and manifolds. The purpose of this paper is to overview different examples of geometric deep learning problems and present available solutions, key difficulties, applications, and future research directions in this nascent field

    Estimation of instrinsic dimension via clustering

    Full text link
    The problem of estimating the intrinsic dimension of a set of points in high dimensional space is a critical issue for a wide range of disciplines, including genomics, finance, and networking. Current estimation techniques are dependent on either the ambient or intrinsic dimension in terms of computational complexity, which may cause these methods to become intractable for large data sets. In this paper, we present a clustering-based methodology that exploits the inherent self-similarity of data to efficiently estimate the intrinsic dimension of a set of points. When the data satisfies a specified general clustering condition, we prove that the estimated dimension approaches the true Hausdorff dimension. Experiments show that the clustering-based approach allows for more efficient and accurate intrinsic dimension estimation compared with all prior techniques, even when the data does not conform to obvious self-similarity structure. Finally, we present empirical results which show the clustering-based estimation allows for a natural partitioning of the data points that lie on separate manifolds of varying intrinsic dimension

    Graph Laplacian for Image Anomaly Detection

    Get PDF
    Reed-Xiaoli detector (RXD) is recognized as the benchmark algorithm for image anomaly detection; however, it presents known limitations, namely the dependence over the image following a multivariate Gaussian model, the estimation and inversion of a high-dimensional covariance matrix, and the inability to effectively include spatial awareness in its evaluation. In this work, a novel graph-based solution to the image anomaly detection problem is proposed; leveraging the graph Fourier transform, we are able to overcome some of RXD's limitations while reducing computational cost at the same time. Tests over both hyperspectral and medical images, using both synthetic and real anomalies, prove the proposed technique is able to obtain significant gains over performance by other algorithms in the state of the art.Comment: Published in Machine Vision and Applications (Springer
    corecore