1,277 research outputs found

    Markov Decision Processes with Applications in Wireless Sensor Networks: A Survey

    Full text link
    Wireless sensor networks (WSNs) consist of autonomous and resource-limited devices. The devices cooperate to monitor one or more physical phenomena within an area of interest. WSNs operate as stochastic systems because of randomness in the monitored environments. For long service time and low maintenance cost, WSNs require adaptive and robust methods to address data exchange, topology formulation, resource and power optimization, sensing coverage and object detection, and security challenges. In these problems, sensor nodes are to make optimized decisions from a set of accessible strategies to achieve design goals. This survey reviews numerous applications of the Markov decision process (MDP) framework, a powerful decision-making tool to develop adaptive algorithms and protocols for WSNs. Furthermore, various solution methods are discussed and compared to serve as a guide for using MDPs in WSNs

    Machine Learning in Wireless Sensor Networks: Algorithms, Strategies, and Applications

    Get PDF
    Wireless sensor networks monitor dynamic environments that change rapidly over time. This dynamic behavior is either caused by external factors or initiated by the system designers themselves. To adapt to such conditions, sensor networks often adopt machine learning techniques to eliminate the need for unnecessary redesign. Machine learning also inspires many practical solutions that maximize resource utilization and prolong the lifespan of the network. In this paper, we present an extensive literature review over the period 2002-2013 of machine learning methods that were used to address common issues in wireless sensor networks (WSNs). The advantages and disadvantages of each proposed algorithm are evaluated against the corresponding problem. We also provide a comparative guide to aid WSN designers in developing suitable machine learning solutions for their specific application challenges.Comment: Accepted for publication in IEEE Communications Surveys and Tutorial

    PERFORMANCE ANALYSIS AND OPTIMIZATION OF QUERY-BASED WIRELESS SENSOR NETWORKS

    Get PDF
    This dissertation is concerned with the modeling, analysis, and optimization of large-scale, query-based wireless sensor networks (WSNs). It addresses issues related to the time sensitivity of information retrieval and dissemination, network lifetime maximization, and optimal clustering of sensor nodes in mobile WSNs. First, a queueing-theoretic framework is proposed to evaluate the performance of such networks whose nodes detect and advertise significant events that are useful for only a limited time; queries generated by sensor nodes are also time-limited. The main performance parameter is the steady state proportion of generated queries that fail to be answered on time. A scalable approximation for this parameter is first derived assuming the transmission range of sensors is unlimited. Subsequently, the proportion of failed queries is approximated using a finite transmission range. The latter approximation is remarkably accurate, even when key model assumptions related to event and query lifetime distributions and network topology are violated. Second, optimization models are proposed to maximize the lifetime of a query-based WSN by selecting the transmission range for all of the sensor nodes, the resource replication level (or time-to-live counter) and the active/sleep schedule of nodes, subject to connectivity and quality-of-service constraints. An improved lower bound is provided for the minimum transmission range needed to ensure no network nodes are isolated with high probability. The optimization models select the optimal operating parameters in each period of a finite planning horizon, and computational results indicate that the maximum lifetime can be significantly extended by adjusting the key operating parameters as sensors fail over time due to energy depletion. Finally, optimization models are proposed to maximize the demand coverage and minimize the costs of locating, and relocating, cluster heads in mobile WSNs. In these models, the locations of mobile sensor nodes evolve randomly so that each sensor must be optimally assigned to a cluster head during each period of a finite planning horizon. Additionally, these models prescribe the optimal times at which to update the sensor locations to improve coverage. Computational experiments illustrate the usefulness of dynamically updating cluster head locations and sensor location information over time

    Distributed information extraction from large-scale wireless sensor networks

    Get PDF

    A network-aware framework for energy-efficient data acquisition in wireless sensor networks

    Get PDF
    Wireless sensor networks enable users to monitor the physical world at an extremely high fidelity. In order to collect the data generated by these tiny-scale devices, the data management community has proposed the utilization of declarative data-acquisition frameworks. While these frameworks have facilitated the energy-efficient retrieval of data from the physical environment, they were agnostic of the underlying network topology and also did not support advanced query processing semantics. In this paper we present KSpot+, a distributed network-aware framework that optimizes network efficiency by combining three components: (i) the tree balancing module, which balances the workload of each sensor node by constructing efficient network topologies; (ii) the workload balancing module, which minimizes data reception inefficiencies by synchronizing the sensor network activity intervals; and (iii) the query processing module, which supports advanced query processing semantics. In order to validate the efficiency of our approach, we have developed a prototype implementation of KSpot+ in nesC and JAVA. In our experimental evaluation, we thoroughly assess the performance of KSpot+ using real datasets and show that KSpot+ provides significant energy reductions under a variety of conditions, thus significantly prolonging the longevity of a WSN
    • …
    corecore