5,881 research outputs found

    Reconstruction of Directed Networks from Consensus Dynamics

    Full text link
    This paper addresses the problem of identifying the topology of an unknown, weighted, directed network running a consensus dynamics. We propose a methodology to reconstruct the network topology from the dynamic response when the system is stimulated by a wide-sense stationary noise of unknown power spectral density. The method is based on a node-knockout, or grounding, procedure wherein the grounded node broadcasts zero without being eliminated from the network. In this direction, we measure the empirical cross-power spectral densities of the outputs between every pair of nodes for both grounded and ungrounded consensus to reconstruct the unknown topology of the network. We also establish that in the special cases of undirected or purely unidirectional networks, the reconstruction does not need grounding. Finally, we extend our results to the case of a directed network assuming a general dynamics, and prove that the developed method can detect edges and their direction.Comment: 6 page

    Learning Exact Topology of a Loopy Power Grid from Ambient Dynamics

    Full text link
    Estimation of the operational topology of the power grid is necessary for optimal market settlement and reliable dynamic operation of the grid. This paper presents a novel framework for topology estimation for general power grids (loopy or radial) using time-series measurements of nodal voltage phase angles that arise from the swing dynamics. Our learning framework utilizes multivariate Wiener filtering to unravel the interaction between fluctuations in voltage angles at different nodes and identifies operational edges by considering the phase response of the elements of the multivariate Wiener filter. The performance of our learning framework is demonstrated through simulations on standard IEEE test cases.Comment: accepted as a short paper in ACM eEnergy 2017, Hong Kon

    Spectral identification of networks with inputs

    Get PDF
    We consider a network of interconnected dynamical systems. Spectral network identification consists in recovering the eigenvalues of the network Laplacian from the measurements of a very limited number (possibly one) of signals. These eigenvalues allow to deduce some global properties of the network, such as bounds on the node degree. Having recently introduced this approach for autonomous networks of nonlinear systems, we extend it here to treat networked systems with external inputs on the nodes, in the case of linear dynamics. This is more natural in several applications, and removes the need to sometimes use several independent trajectories. We illustrate our framework with several examples, where we estimate the mean, minimum, and maximum node degree in the network. Inferring some information on the leading Laplacian eigenvectors, we also use our framework in the context of network clustering.Comment: 8 page
    • …
    corecore