2,187 research outputs found

    Topology Control Algorithm considering Antenna Radiation Pattern in Three-Dimensional Wireless Sensor Networks

    Get PDF
    Topology control is a key issue of wireless sensor network to reduce energy consumption and communication collision. Topology control algorithms in three-dimensional space have been proposed by modifying existing two-dimensional algorithms. These algorithms are based on the theoretical assumption that transmission power is radiated equally to the all directions by using isotropic antenna model. However, isotropic antenna does not exist, which is hypothetical antenna to compare the real antenna performance. In the real network, dipole antenna is applied, and because of the radiation pattern, performance of topology control algorithm is degraded. We proposed local remapping algorithm to solve the problem and applied it to existing topology control algorithms. Simulation results show that our algorithm increases performance of existing algorithms and reduces power consumption

    Survey of Inter-satellite Communication for Small Satellite Systems: Physical Layer to Network Layer View

    Get PDF
    Small satellite systems enable whole new class of missions for navigation, communications, remote sensing and scientific research for both civilian and military purposes. As individual spacecraft are limited by the size, mass and power constraints, mass-produced small satellites in large constellations or clusters could be useful in many science missions such as gravity mapping, tracking of forest fires, finding water resources, etc. Constellation of satellites provide improved spatial and temporal resolution of the target. Small satellite constellations contribute innovative applications by replacing a single asset with several very capable spacecraft which opens the door to new applications. With increasing levels of autonomy, there will be a need for remote communication networks to enable communication between spacecraft. These space based networks will need to configure and maintain dynamic routes, manage intermediate nodes, and reconfigure themselves to achieve mission objectives. Hence, inter-satellite communication is a key aspect when satellites fly in formation. In this paper, we present the various researches being conducted in the small satellite community for implementing inter-satellite communications based on the Open System Interconnection (OSI) model. This paper also reviews the various design parameters applicable to the first three layers of the OSI model, i.e., physical, data link and network layer. Based on the survey, we also present a comprehensive list of design parameters useful for achieving inter-satellite communications for multiple small satellite missions. Specific topics include proposed solutions for some of the challenges faced by small satellite systems, enabling operations using a network of small satellites, and some examples of small satellite missions involving formation flying aspects.Comment: 51 pages, 21 Figures, 11 Tables, accepted in IEEE Communications Surveys and Tutorial

    Distance-based sensor node localization by using ultrasound, RSSI and ultra-wideband - A comparision between the techniques

    Get PDF
    Wireless sensor networks (WSNs) have become one of the most important topics in wireless communication during the last decade. In a wireless sensor system, sensors are spread over a region to build a sensor network and the sensors in a region co-operate to each other to sense, process, filter and routing. Sensor Positioning is a fundamental and crucial issue for sensor network operation and management. WSNs have so many applications in different areas such as health-care, monitoring and control, rescuing and military; they all depend on nodes being able to accurately determine their locations. This master’s thesis is focused on distance-based sensor node localization techniques; Received signal strength indicator, ultrasound and ultra-wideband. Characteristics and factors which affect these distance estimation techniques are analyzed theoretically and through simulation the quality of these techniques are compared in different scenarios. MDS, a centralized algorithm is used for solving the coordinates. It is a set of data analysis techniques that display the structure of distance-like data as a geometrical picture. Centralized and distributed implementations of MDS are also discussed. All simulations and computations in this thesis are done in Matlab. Virtual WSN is simulated on Sensorviz. Sensorviz is a simulation and visualization tool written by Andreas Savvides.fi=Opinnäytetyö kokotekstinä PDF-muodossa.|en=Thesis fulltext in PDF format.|sv=Lärdomsprov tillgängligt som fulltext i PDF-format

    Distance-based sensor node localization by using ultrasound, RSSI and ultra-wideband - A comparision between the techniques

    Get PDF
    Wireless sensor networks (WSNs) have become one of the most important topics in wireless communication during the last decade. In a wireless sensor system, sensors are spread over a region to build a sensor network and the sensors in a region co-operate to each other to sense, process, filter and routing. Sensor Positioning is a fundamental and crucial issue for sensor network operation and management. WSNs have so many applications in different areas such as health-care, monitoring and control, rescuing and military; they all depend on nodes being able to accurately determine their locations. This master’s thesis is focused on distance-based sensor node localization techniques; Received signal strength indicator, ultrasound and ultra-wideband. Characteristics and factors which affect these distance estimation techniques are analyzed theoretically and through simulation the quality of these techniques are compared in different scenarios. MDS, a centralized algorithm is used for solving the coordinates. It is a set of data analysis techniques that display the structure of distance-like data as a geometrical picture. Centralized and distributed implementations of MDS are also discussed. All simulations and computations in this thesis are done in Matlab. Virtual WSN is simulated on Sensorviz. Sensorviz is a simulation and visualization tool written by Andreas Savvides.fi=Opinnäytetyö kokotekstinä PDF-muodossa.|en=Thesis fulltext in PDF format.|sv=Lärdomsprov tillgängligt som fulltext i PDF-format

    Interference Mitigation in Multi-Hop Wireless Networks with Advanced Physical-Layer Techniques

    Get PDF
    In my dissertation, we focus on the wireless network coexistence problem with advanced physical-layer techniques. For the first part, we study the problem of Wireless Body Area Networks (WBAN)s coexisting with cross-technology interference (CTI). WBANs face the RF cross-technology interference (CTI) from non-protocol-compliant wireless devices. Werst experimentally characterize the adverse effect on BAN caused by the CTI sources. Then we formulate a joint routing and power control (JRPC) problem, which aims at minimizing energy consumption while satisfying node reachability and delay constraints. We reformulate our problem into a mixed integer linear programing problem (MILP) and then derive the optimal results. A practical JRPC protocol is then proposed. For the second part, we study the coexistence of heterogeneous multi-hop networks with wireless MIMO. We propose a new paradigm, called cooperative interference mitigation (CIM), which makes it possible for disparate networks to cooperatively mitigate the interference to/from each other to enhance everyone\u27s performance. We establish two tractable models to characterize the CIM behaviors of both networks by using full IC (FIC) and receiver-side IC (RIC) only. We propose two bi-criteria optimization problems aiming at maximizing both networks\u27 throughput, while cooperatively canceling the interference between them based on our two models. In the third and fourth parts, we study the coexistence problem with MIMO from a different point of view: the incentive of cooperation. We propose a novel two-round game framework, based on which we derive two networks\u27 equilibrium strategies and the corresponding closed-form utilities. We then extend our game-theoretical analysis to a general multi-hop case, specifically the coexistence problem between primary network and multi-hop secondary network in the cognitive radio networks domain. In the final part, we study the benefits brought by reconfigurable antennas (RA). We systematically exploit the pattern diversity and fast reconfigurability of RAs to enhance the throughput of MWNs. Werst propose a novel link-layer model that captures the dynamic relations between antenna pattern, link coverage and interference. Based on our model, a throughput optimization framework is proposed by jointly considering pattern selection and link scheduling, which is formulated as a mixed integer non-linear programming problem

    Exploitation of Transparent Conductive Oxides in the Implementation of a Window-Integrated Wireless Sensor Node

    Full text link
    Exploitation of transparent conductive oxides (TCO) to implement an energy-autonomous sensor node for a wireless sensor network (WSN) is studied and a practical solution presented. In the practical implementations, flexible and rigid substrates that is polyimide and glass, are coated with TCO, namely aluminum doped zinc oxide (AZO). AZO-coated flexible substrates are used to form thermoelectric generators (TEG) that produce electricity for the sensor electronics of the node from thermal gradients on a window. As the second solution to utilize AZO, its conductive properties are exploited to implement transparent antennas for the sensor node. Antennas for a UHF RFID transponder and the Bluetooth radio of the node are implemented. A prototype of a flexible transparent TEG, with the area of 67 cm2 when folded, was measured to produce power of 1.6 uW with a temperature difference of 43 K. A radiation efficiency of -9.1 dB was measured for the transparent RFID antenna prototype with the center frequency of 900 MHz. Radiation efficiencies between -3.8 dB and -0.4 dB, depending on the substrate, were obtained for the 2.45 GHz Bluetooth antenna.Comment: 10 pages, 14 figures, last author version accepted for publication in IEEE Sensors Journa

    On-Body Channel Measurement Using Wireless Sensors

    Get PDF
    © 2012 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other users, including reprinting/ republishing this material for advertising or promotional purposes, creating new collective works for resale or redistribution to servers or lists, or reuse of any copyrighted components of this work in other works.This post-acceptance version of the paper is essentially complete, but may differ from the official copy of record, which can be found at the following web location (subscription required to access full paper): http://dx.doi.org/10.1109/TAP.2012.219693

    Design of Wireless Sensors for IoT with Energy Storage and Communication Channel Heterogeneity

    Get PDF
    Autonomous Wireless Sensors (AWSs) are at the core of every Wireless Sensor Network (WSN). Current AWS technology allows the development of many IoT-based applications, ranging from military to bioengineering and from industry to education. The energy optimization of AWSs depends mainly on: Structural, functional, and application specifications. The holistic design methodology addresses all the factors mentioned above. In this sense, we propose an original solution based on a novel architecture that duplicates the transceivers and also the power source using a hybrid storage system. By identifying the consumption needs of the transceivers, an appropriate methodology for sizing and controlling the power flow for the power source is proposed. The paper emphasizes the fusion between information, communication, and energy consumption of the AWS in terms of spectrum information through a set of transceiver testing scenarios, identifying the main factors that influence the sensor node design and their inter-dependencies. Optimization of the system considers all these factors obtaining an energy efficient AWS, paving the way towards autonomous sensors by adding an energy harvesting element to them

    Reliable high-data rate body-centric wireless communication

    Get PDF
    corecore