69 research outputs found

    Computer theorem proving in math

    Get PDF
    We give an overview of issues surrounding computer-verified theorem proving in the standard pure-mathematical context. This is based on my talk at the PQR conference (Brussels, June 2003)

    Representation and duality of the untyped lambda-calculus in nominal lattice and topological semantics, with a proof of topological completeness

    Get PDF
    We give a semantics for the lambda-calculus based on a topological duality theorem in nominal sets. A novel interpretation of lambda is given in terms of adjoints, and lambda-terms are interpreted absolutely as sets (no valuation is necessary)

    A continuous computational interpretation of type theories

    Get PDF
    This thesis provides a computational interpretation of type theory validating Brouwer’s uniform-continuity principle that all functions from the Cantor space to natural numbers are uniformly continuous, so that type-theoretic proofs with the principle as an assumption have computational content. For this, we develop a variation of Johnstone’s topological topos, which consists of sheaves on a certain uniform-continuity site that is suitable for predicative, constructive reasoning. Our concrete sheaves can be described as sets equipped with a suitable continuity structure, which we call C-spaces, and their natural transformations can be regarded as continuous maps. The Kleene-Kreisel continuous functional can be calculated within the category of C-spaces. Our C-spaces form a locally cartesian closed category with a natural numbers object, and hence give models of Gödel’s system T and of dependent type theory. Moreover, the category has a fan functional that continuously compute moduli of uniform continuity, which validates the uniform-continuity principle formulated as a skolemized formula in system T and as a type via the Curry-Howard interpretation in dependent type theory. We emphasize that the construction of C-spaces and the verification of the uniform-continuity principles have been formalized in intensional Martin-Löf type theory in Agda notation

    Topological Foundations of Cognitive Science

    Get PDF
    A collection of papers presented at the First International Summer Institute in Cognitive Science, University at Buffalo, July 1994, including the following papers: ** Topological Foundations of Cognitive Science, Barry Smith ** The Bounds of Axiomatisation, Graham White ** Rethinking Boundaries, Wojciech Zelaniec ** Sheaf Mereology and Space Cognition, Jean Petitot ** A Mereotopological Definition of 'Point', Carola Eschenbach ** Discreteness, Finiteness, and the Structure of Topological Spaces, Christopher Habel ** Mass Reference and the Geometry of Solids, Almerindo E. Ojeda ** Defining a 'Doughnut' Made Difficult, N .M. Gotts ** A Theory of Spatial Regions with Indeterminate Boundaries, A.G. Cohn and N.M. Gotts ** Mereotopological Construction of Time from Events, Fabio Pianesi and Achille C. Varzi ** Computational Mereology: A Study of Part-of Relations for Multi-media Indexing, Wlodek Zadrozny and Michelle Ki

    Proceedings of the 8th Scandinavian Logic Symposium

    Get PDF
    • …
    corecore