670 research outputs found

    On-chip topological transport of optical frequency combs in silicon-based valley photonic crystals

    Full text link
    The generation and control of optical frequency combs in integrated photonic systems enables complex, high-controllable, and large-scale devices. In parallel, harnessing topological physics in multipartite systems has allowed them with compelling features such as robustness against fabrication imperfections. Here we experimentally demonstrate on-chip topological transport for optical frequency combs at telecommunication wavelengths, both in classical and nonclassical domains. We access both the quantum frequency combs and dissipative Kerr soliton combs with a micro-resonator. The quantum frequency comb, that is, a coherent superposition of multiple frequency modes, is proven to be a frequency-entangled qudit state. We also show that dissipative Kerr soliton combs are highly coherent and mode-locked due to the collective coherence or self-organization of solitons. Moreover, the valley kink states allow both quantum frequency combs and dissipative Kerr soliton combs with robustness against sharp bends. Our topologically protected optical frequency combs could enable the inherent robustness in integrated complex photonic systems.Comment: 20 pages,12 figure

    Bright quantum photon sources from a topological Floquet resonance

    Full text link
    Entanglement, a fundamental concept in quantum mechanics, plays a crucial role as a valuable resource in quantum technologies. The practical implementation of entangled photon sources encounters obstacles arising from imperfections and defects inherent in physical systems and microchips, resulting in a loss or degradation of entanglement. The topological photonic insulators, however, have emerged as promising candidates, demonstrating an exceptional capability to resist defect-induced scattering, thus enabling the development of robust entangled sources. Despite their inherent advantages, building bright and programmable topologically protected entangled sources remains challenging due to intricate device designs and weak material nonlinearity. Here we present an advancement in entanglement generation achieved through a non-magnetic and tunable resonance-based anomalous Floquet insulator, utilizing an optical spontaneous four-wave mixing process. Our experiment demonstrates a substantial enhancement in entangled photon pair generation compared to devices reliant solely on topological edge states and outperforming trivial photonic devices in spectral resilience. This work marks a step forward in the pursuit of defect-robust and bright entangled sources that can open avenues for the exploration of cascaded quantum devices and the engineering of quantum states. Our result could lead to the development of resilient quantum sources with potential applications in quantum technologies.Comment: 20 pages, 10 figure

    Extracting entangled qubits from Majorana fermions in quantum dot chains through the measurement of parity

    Full text link
    We propose a scheme for extracting entangled charge qubits from quantum-dot chains that support zero-energy edge modes. The edge mode is composed of Majorana fermions localized at the ends of each chain. The qubit, logically encoded in double quantum dots, can be manipulated through tunneling and pairing interactions between them. The detailed form of the entangled state depends on both the parity measurement (an even or odd number) of the boundary-site electrons in each chain and the teleportation between the chains. The parity measurement is realized through the dispersive coupling of coherent-state microwave photons to the boundary sites, while the teleportation is performed via Bell measurements. Our scheme illustrates \emph{localizable entanglement} in a fermionic system, which serves feasibly as a quantum repeater under realistic experimental conditions, as it allows for finite temperature effect and is robust against disorders, decoherence and quasi-particle poisoning.Comment: Accepted by Scientific Report
    • …
    corecore