341 research outputs found

    Beam-colored Sketch and Image-based 3D Continuous Wireframe Reconstruction with different Materials and Cross-Sections

    Get PDF
    The automated reverse engineering of wireframes is a common task in topology optimization, fast concept design, bionic and point cloud reconstruction. This article deals with the usage of skeleton-based reconstruction of sketches in 2D images. The result leads to a flexible at least C₁ continuous shape description

    Designing end use components for additive manufacturing: navigating an emerging field

    Get PDF
    Despite much excitement, research and development, Additive Manufacturing (AM) as a series production process for end-use components and products is not yet widespread or considered mainstream. However, there is a clear potential for AM to form a viable alternative to many conventional manufacturing processes, especially in low to medium production volumes. A key enabler for this transformation is the capacity to design components and products that are both able to exploit AM capabilities and avoid its limitations. In recent years, many studies have explored the topic of Design for Additive Manufacturing (DfAM). This report presents an overview of the state of the art of this research area. A systematic review has been carried out to identify the most significant academic studies on the topic. The review resulted in 66 key resources being identified and critically reviewed. These resources have been reviewed and categorised using a generic model of the design process. This categorisation provides and easy and immediate way to map and navigate this emerging field. Consequently, five major research areas are presented: 1. Process planning 2. Detail design 3. Embodiment design 4. Conceptual design 5. Design processes In the discussion, these research areas are examined with the aim of highlighting shortcomings and providing future research directions

    Infill topology and shape optimisation of lattice-skin structures

    Full text link
    Lattice-skin structures composed of a thin-shell skin and a lattice infill are widespread in nature and large-scale engineering due to their efficiency and exceptional mechanical properties. Recent advances in additive manufacturing, or 3D printing, make it possible to create lattice-skin structures of almost any size with arbitrary shape and geometric complexity. We propose a novel gradient-based approach to optimising both the shape and infill of lattice-skin structures to improve their efficiency further. The respective gradients are computed by fully considering the lattice-skin coupling while the lattice topology and shape optimisation problems are solved in a sequential manner. The shell is modelled as a Kirchhoff-Love shell and analysed using isogeometric subdivision surfaces, whereas the lattice is modelled as a pin-jointed truss. The lattice consists of many cells, possibly of different sizes, with each containing a small number of struts. We propose a penalisation approach akin to the SIMP (solid isotropic material with penalisation) method for topology optimisation of the lattice. Furthermore, a corresponding sensitivity filter and a lattice extraction technique are introduced to ensure the stability of the optimisation process and to eliminate scattered struts of small cross-sectional areas. The developed topology optimisation technique is suitable for non-periodic, non-uniform lattices. For shape optimisation of both the shell and the lattice, the geometry of the lattice-skin structure is parameterised using the free-form deformation technique. The topology and shape optimisation problems are solved in an iterative, sequential manner. The effectiveness of the proposed approach and the influence of different algorithmic parameters are demonstrated with several numerical examples.Comment: 20 pages, 17 figure

    Design optimization for an additively manufactured automotive component

    Get PDF
    The aim of this paper is to investigate the design optimization and additive manufacture of automotive components. A Titanium brake pedal processed through Selective Laser Melting (SLM) is considered as a test case. Different design optimisation techniques have been employed including topology optimization and lattice structure design. Rather than using a conventional topology optimization method, a recently developed topology optimization method called Iso-XFEM is used in this work. This method is capable of generating high resolution topology optimised solutions using isolines/isosurfaces of a structural performance criterion and eXtended Finite Element Method (XFEM). Lattice structure design is the other technique used in this work for the design of the brake pedal. The idea is to increase the stability of the brake pedal to random loads applied to the foot pad area of the pedal. The use of lattice structures can also significantly reduce the high residual stress induced during the SLM process. The results suggest that the integration of the design optimization techniques with a metal additive manufacturing process enables development of a promising tool for producing lightweight energy efficient automotive components

    Squeak and Rattle Prediction for Robust Product Development in the automotive industry

    Get PDF
    Squeak and rattle are nonstationary, irregular, and impulsive sounds that are audible inside the car cabin. For decades, customer complaints about squeak and rattle have been, and still are, among the top quality issues in the automotive industry. These annoying sounds are perceived as quality defect indications and burden warranty costs to the car manufacturers. Today, the quality improvements regarding the persistent type of sounds in the car, as well as the increasing popularity of electric engines, as green and quiet propulsion solutions, stress the necessity for attenuating annoying sounds like squeak and rattle more than in the past. The economical and robust solutions to this problem are to be sought in the pre-design-freeze phases of the product development and by employing design-concept-related practices. To achieve this goal, prediction and evaluation tools and methods are required to deal with the squeak and rattle quality issues upfront in the product development process. The available tools and methods for the prediction of squeak and rattle sounds in the pre-design-freeze phases of a car development process are not yet sufficiently mature. The complexity of the squeak and rattle events, the existing knowledge gap about the mechanisms behind the squeak and rattle sounds, the lack of accurate simulation and post-processing methods, as well as the computational cost of complex simulations are some of the significant hurdles in this immaturity. This research addresses this problem by identifying a framework for the prediction of squeak and rattle sounds based on a cause-and-effect diagram. The main domains and the elements and the sub-contributors to the problem in each domain within this framework are determined through literature studies, field explorations and descriptive studies conducted on the subject. Further, improvement suggestions for the squeak and rattle evaluation and prediction methods are proposed through prescriptive studies. The applications of some of the proposed methods in the automotive industry are demonstrated and examined in industrial problems.The outcome of this study enhances the understanding of some of the parameters engaged in the squeak and rattle generation. Simulation methods are proposed to actively involve the contributing factors studied in this work for squeak and rattle risk evaluation. To enhance the efficiency and accuracy of the risk evaluation process, methods were investigated and proposed for the system excitation efficiency, modelling accuracy and efficiency and quantification of the response in the time and frequency domains. The demonstrated simulation methods besides the improved understanding of the mechanisms behind the phenomenon can facilitate a more accurate and robust prediction of squeak and rattle risk during the pre-design-freeze stages of the car development

    Framework for decentralised architectural design BIM and blockchain integration.

    Get PDF
    The paper introduces a framework for decentralised architectural design in the context of the fourth industrial revolution. We examine first the constraints of building information modelling in regard to collaboration and trust. We then introduce Blockchain infrastructure as a means for creating new operational and business models for architectural design, through project governance, scaling collaboration nominally to thousands of agents, and shifting trust to the infrastructure rather than the architectural design team. Through a wider consideration of Blockchains in construction projects we focus on the design process and validate our framework with a prototype of BIM design optimisation integrated with a Blockchain mechanism. The paper concludes by outlining the contributions our framework can enhance in the building information modelling processes, within the context of the fourth industrial revolution

    On Triangular Splines:CAD and Quadrature

    Get PDF
    corecore