7,504 research outputs found

    Theta dependence of SU(N) gauge theories in the presence of a topological term

    Full text link
    We review results concerning the theta dependence of 4D SU(N) gauge theories and QCD, where theta is the coefficient of the CP-violating topological term in the Lagrangian. In particular, we discuss theta dependence in the large-N limit. Most results have been obtained within the lattice formulation of the theory via numerical simulations, which allow to investigate the theta dependence of the ground-state energy and the spectrum around theta=0 by determining the moments of the topological charge distribution, and their correlations with other observables. We discuss the various methods which have been employed to determine the topological susceptibility, and higher-order terms of the theta expansion. We review results at zero and finite temperature. We show that the results support the scenario obtained by general large-N scaling arguments, and in particular the Witten-Veneziano mechanism to explain the U(1)_A problem. We also compare with results obtained by other approaches, especially in the large-N limit, where the issue has been also addressed using, for example, the AdS/CFT correspondence. We discuss issues related to theta dependence in full QCD: the neutron electric dipole moment, the dependence of the topological susceptibility on the quark masses, the U(1)_A symmetry breaking at finite temperature. We also consider the 2D CP(N) model, which is an interesting theoretical laboratory to study issues related to topology. We review analytical results in the large-N limit, and numerical results within its lattice formulation. Finally, we discuss the main features of the two-point correlation function of the topological charge density.Comment: A typo in Eq. (3.9) has been corrected. An additional subsection (5.2) has been inserted to demonstrate the nonrenormalizability of the relevant theta parameter in the presence of massive fermions, which implies that the continuum (a -> 0) limit must be taken keeping theta fixe

    Effect of correlations on network controllability

    Get PDF
    A dynamical system is controllable if by imposing appropriate external signals on a subset of its nodes, it can be driven from any initial state to any desired state in finite time. Here we study the impact of various network characteristics on the minimal number of driver nodes required to control a network. We find that clustering and modularity have no discernible impact, but the symmetries of the underlying matching problem can produce linear, quadratic or no dependence on degree correlation coefficients, depending on the nature of the underlying correlations. The results are supported by numerical simulations and help narrow the observed gap between the predicted and the observed number of driver nodes in real networks

    Chaotic scattering in solitary wave interactions: A singular iterated-map description

    Full text link
    We derive a family of singular iterated maps--closely related to Poincare maps--that describe chaotic interactions between colliding solitary waves. The chaotic behavior of such solitary wave collisions depends on the transfer of energy to a secondary mode of oscillation, often an internal mode of the pulse. Unlike previous analyses, this map allows one to understand the interactions in the case when this mode is excited prior to the first collision. The map is derived using Melnikov integrals and matched asymptotic expansions and generalizes a ``multi-pulse'' Melnikov integral and allows one to find not only multipulse heteroclinic orbits, but exotic periodic orbits. The family of maps derived exhibits singular behavior, including regions of infinite winding. This problem is shown to be a singular version of the conservative Ikeda map from laser physics and connections are made with problems from celestial mechanics and fluid mechanics.Comment: 29 pages, 17 figures, submitted to Chaos, higher-resolution figures available at author's website: http://m.njit.edu/goodman/publication

    Forbidden ordinal patterns in higher dimensional dynamics

    Full text link
    Forbidden ordinal patterns are ordinal patterns (or `rank blocks') that cannot appear in the orbits generated by a map taking values on a linearly ordered space, in which case we say that the map has forbidden patterns. Once a map has a forbidden pattern of a given length L0L_{0}, it has forbidden patterns of any length L≥L0L\ge L_{0} and their number grows superexponentially with LL. Using recent results on topological permutation entropy, we study in this paper the existence and some basic properties of forbidden ordinal patterns for self maps on n-dimensional intervals. Our most applicable conclusion is that expansive interval maps with finite topological entropy have necessarily forbidden patterns, although we conjecture that this is also the case under more general conditions. The theoretical results are nicely illustrated for n=2 both using the naive counting estimator for forbidden patterns and Chao's estimator for the number of classes in a population. The robustness of forbidden ordinal patterns against observational white noise is also illustrated.Comment: 19 pages, 6 figure

    Relating Topological Determinants of Complex Networks to Their Spectral Properties: Structural and Dynamical Effects

    Get PDF
    The largest eigenvalue of a network's adjacency matrix and its associated principal eigenvector are key elements for determining the topological structure and the properties of dynamical processes mediated by it. We present a physically grounded expression relating the value of the largest eigenvalue of a given network to the largest eigenvalue of two network subgraphs, considered as isolated: The hub with its immediate neighbors and the densely connected set of nodes with maximum KK-core index. We validate this formula showing that it predicts with good accuracy the largest eigenvalue of a large set of synthetic and real-world topologies. We also present evidence of the consequences of these findings for broad classes of dynamics taking place on the networks. As a byproduct, we reveal that the spectral properties of heterogeneous networks built according to the linear preferential attachment model are qualitatively different from those of their static counterparts.Comment: 18 pages, 13 figure

    Deconfined quantum critical points: symmetries and dualities

    Get PDF
    The deconfined quantum critical point (QCP), separating the N\'eel and valence bond solid phases in a 2D antiferromagnet, was proposed as an example of 2+12+1D criticality fundamentally different from standard Landau-Ginzburg-Wilson-Fisher {criticality}. In this work we present multiple equivalent descriptions of deconfined QCPs, and use these to address the possibility of enlarged emergent symmetries in the low energy limit. The easy-plane deconfined QCP, besides its previously discussed self-duality, is dual to Nf=2N_f = 2 fermionic quantum electrodynamics (QED), which has its own self-duality and hence may have an O(4)Ă—Z2T\times Z_2^T symmetry. We propose several dualities for the deconfined QCP with SU(2){\mathrm{SU}(2)} spin symmetry which together make natural the emergence of a previously suggested SO(5)SO(5) symmetry rotating the N\'eel and VBS orders. These emergent symmetries are implemented anomalously. The associated infra-red theories can also be viewed as surface descriptions of 3+1D topological paramagnets, giving further insight into the dualities. We describe a number of numerical tests of these dualities. We also discuss the possibility of "pseudocritical" behavior for deconfined critical points, and the meaning of the dualities and emergent symmetries in such a scenario.Comment: Published version, 44 pages + references, 4 figures. A summary of main results in p7-

    Microscopic activity patterns in the Naming Game

    Get PDF
    The models of statistical physics used to study collective phenomena in some interdisciplinary contexts, such as social dynamics and opinion spreading, do not consider the effects of the memory on individual decision processes. On the contrary, in the Naming Game, a recently proposed model of Language formation, each agent chooses a particular state, or opinion, by means of a memory-based negotiation process, during which a variable number of states is collected and kept in memory. In this perspective, the statistical features of the number of states collected by the agents becomes a relevant quantity to understand the dynamics of the model, and the influence of topological properties on memory-based models. By means of a master equation approach, we analyze the internal agent dynamics of Naming Game in populations embedded on networks, finding that it strongly depends on very general topological properties of the system (e.g. average and fluctuations of the degree). However, the influence of topological properties on the microscopic individual dynamics is a general phenomenon that should characterize all those social interactions that can be modeled by memory-based negotiation processes.Comment: submitted to J. Phys.
    • …
    corecore