104 research outputs found

    Switch induced instabilities for stable power system DAE models

    Get PDF
    It is well known that for switched systems the overall dynamics can be unstable despite stability of all individual modes. We show that this phenomenon can indeed occur for a linearized DAE model of power grids. By making certain topological assumptions on the power grid, we can ensure stability under arbitrary switching for the linearized DAE model

    Load and Renewable-Following Control of Linearization-Free Differential Algebraic Equation Power System Models

    Full text link
    Electromechanical transients in power networks are mostly caused by mismatch between power consumption and production, causing generators to deviate from the nominal frequency. To that end, feedback control algorithms have been designed to perform frequency and load/renewables-following control. In particular, the literature addressed a plethora of grid- and frequency-control challenges with a focus on linearized, differential equation models whereby algebraic constraints (i.e., power flows) are eliminated. This is in contrast with the more realistic nonlinear differential algebraic equation (NDAE) models. Yet, as grids are increasingly pushed to their limits via intermittent renewables and varying loads, their physical states risk escaping operating regions due to either a poor prediction or sudden changes in renewables or demands -- deeming a feedback controller based on a linearization point virtually unusable. In lieu of linearized differential equation models, the objective of this paper is to design a simple, purely decentralized, linearization-free, feedback control law for NDAE models of power networks. The objective of such controller is to primarily stabilize frequency oscillations after a large, unknown disturbance in renewables or loads. Although the controller design involves advanced NDAE system theory, the controller itself is as simple as a decentralized proportional or linear quadratic regulator in its implementation. Case studies demonstrate that the proposed controller is able to stabilize dynamic and algebraic states under significant disturbances.Comment: 13 pages, 6 figures, 2 table

    On differential-algebraic control systems

    Get PDF
    In der vorliegenden Dissertation werden differential-algebraische Gleichungen (differential-algebraic equations, DAEs) der Form \ddt E x = Ax + f betrachtet, wobei EE und AA beliebige Matrizen sind. Falls EE nichtverschwindende Einträge hat, dann kommen in der Gleichung Ableitungen der entsprechenden Komponenten von xx vor. Falls EE eine Nullzeile hat, dann kommen in der entsprechenden Gleichung keine Ableitungen vor und sie ist rein algebraisch. Daher werden Gleichungen vom Typ \ddt E x = Ax + f differential-algebraische Gleichungen genannt. Ein Ziel dieser Dissertation ist es, eine strukturelle Zerlegung einer DAE in vier Teile herzuleiten: einen ODE-Anteil, einen nilpotenten Anteil, einen unterbestimmten Anteil und einen überbestimmten Anteil. Jeder Anteil beschreibt ein anderes Lösungsverhalten in Hinblick auf Existenz und Eindeutigkeit von Lösungen für eine vorgegebene Inhomogenität ff und Konsistenzbedingungen an ff. Die Zerlegung, namentlich die quasi-Kronecker Form (QKF), verallgemeinert die wohlbekannte Kronecker-Normalform und behebt einige ihrer Nachteile. Die QKF wird ausgenutzt, um verschiedene Konzepte der Kontrollierbarkeit und Stabilisierbarkeit für DAEs mit~f=Buf=Bu zu studieren. Hier bezeichnet uu den Eingang des differential-algebraischen Systems. Es werden Zerlegungen unter System- und Feedback-Äquivalenz, sowie die Folgen einer Behavioral-Steuerung Kxx+Kuu=0K_x x + K_u u = 0 für die Stabilisierung des Systems untersucht. Falls für das DAE-System zusätzlich eine Ausgangs-Gleichung y=Cxy=Cx gegeben ist, dann lässt sich das Konzept der Nulldynamik wie folgt definieren: die Nulldynamik ist, grob gesagt, die Dynamik, die am Ausgang nicht sichtbar ist, d.h. die Menge aller Lösungs-Trajektorien (x,u,y)(x,u,y) mit y=0y=0. Für rechts-invertierbare Systeme mit autonomer Nulldynamik wird eine Zerlegung hergeleitet, welche die Nulldynamik entkoppelt. Diese versetzt uns in die Lage, eine Behavior-Steuerung zu entwickeln, die das System stabilisiert, vorausgesetzt die Nulldynamik selbst ist stabil. Wir betrachten auch zwei Regelungs-Strategien, die von den Eigenschaften der oben genannten System-Klasse profitieren: Hochverstärkungs- und Funnel-Regelung. Ein System \ddt E x = Ax + Bu, y=Cxy=Cx, hat die Hochverstärkungseigenschaft, wenn es durch die Anwendung der proportionalen Ausgangsrückführung u=kyu=-ky, mit k>0k>0 hinreichend groß, stabilisiert werden kann. Wir beweisen, dass rechts-invertierbare Systeme mit asymptotisch stabiler Nulldynamik, die eine bestimmte Relativgrad-Annahme erfüllen, die Hochverstärkungseigenschaft haben. Während der Hochverstärkungs-Regler recht einfach ist, ist es jedoch a priori nicht bekannt, wie groß die Verstärkungskonstante kk gewählt werden muss. Dieses Problem wird durch den Funnel-Regler gelöst: durch die adaptive Justierung der Verstärkung über eine zeitabhängige Funktion k()k(\cdot) und die Ausnutzung der Hochverstärkungseigenschaft wird erreicht, dass große Werte k(t)k(t) nur dann angenommen werden, wenn sie nötig sind. Eine weitere wesentliche Eigenschaft ist, dass der Funnel-Regler das transiente Verhalten des Fehlers e=yyrefe=y-y_{\rm ref} der Bahnverfolgung, wobei yrefy_{\rm ref} die Referenztrajektorie ist, beachtet. Für einen vordefinierten Performanz-Trichter (funnel) ψ\psi wird erreicht, dass e(t)<ψ(t)\|e(t)\|<\psi(t). Schließlich wird der Funnel-Regler auf die Klasse von MNA-Modellen von passiven elektrischen Schaltkreisen mit asymptotisch stabilen invarianten Nullstellen angewendet. Dies erfordert die Einschränkung der Menge der zulässigen Referenztrajektorien auf solche die, in gewisser Weise, die Kirchhoffschen Gesetze punktweise erfüllen.In this dissertation we study differential-algebraic equations (DAEs) of the form Ex'=Ax+f. One aim of the thesis is to derive the quasi-Kronecker form (QKF), which decomposes the DAE into four parts: the ODE part, nilpotent part, underdetermined part and overdetermined part. Each part describes a different solution behavior. The QKF is exploited to study the different controllability and stabilizability concepts for DAEs with f=Bu, where u is the input of the system. Feedback decompositions, behavioral control and stabilization are investigated. For DAE systems with output equation y=Cx, we may define the concept of zero dynamics, which are those dynamics that are not visible at the output. For right-invertible systems with autonomous zero dynamics a decomposition is derived, which decouples the zero dynamics of the system and allows for high-gain and funnel control. It is shown, that the funnel controller achieves tracking of a reference trajectory by the output signal with prescribed transient behavior. Finally, the funnel controller is applied to the class of MNA models of passive electrical circuits with asymptotically stable invariant zeros

    Differential-Algebraic Equations

    Get PDF
    Differential-Algebraic Equations (DAE) are today an independent field of research, which is gaining in importance and becoming of increasing interest for applications and mathematics itself. This workshop has drawn the balance after about 25 years investigations of DAEs and the research aims of the future were intensively discussed

    Complementarity methods in the analysis of piecewise linear dynamical systems

    Get PDF
    The main object of this thesis is a class of piecewise linear dynamical systems that are related both to system theory and to mathematical programming. The dynamical systems in this class are known as complementarity systems. With regard to these nonlinear and nonsmooth dynamical systems, the research in the thesis concentrates on two themes: well-posedness and approximations. The well-posedness issue, in the sense of existence and uniqueness of solutions, is of considerable importance from a model validation point of view. In the thesis, sufficient conditions are established for the well-posedness of complementarity systems. Furthermore, an investigation is made of the convergence of approximations of these systems with an eye towards simulation

    Linear complementarity systems : a study in hybrid dynamics

    Get PDF

    From data and structure to models and controllers

    Get PDF
    Systems and control theory deals with analyzing dynamical systems and shaping their behavior by means of control. Dynamical systems are widespread, and control theory therefore has numerous applications ranging from the control of aircraft and spacecraft to chemical process control. During the last decades, a series of remarkable new control techniques have been developed. The majority of these techniques rely on mathematical models of the to-be-controlled system. However, the growing complexity of modern engineering systems complicates mathematical modeling. In this thesis, we therefore propose new methods to analyze and control dynamical systems without relying on a given system model. Models are thereby replaced by two other ingredients, namely measured data and system structure. In the first part of the thesis, we consider the problem of data-driven control. This problem involves the development of controllers for a dynamical system, purely on the basis of data. We consider both stabilizing controllers, and controllers that minimize a given cost function. Secondly, we focus on networked systems. A networked system is a collection of interconnected dynamical subsystems. For this type of systems, our aim is to reconstruct the interactions between subsystems on the basis of data. Finally, we consider the problem of assessing controllability of a dynamical system using its structure. We provide conditions under which this is possible for a general class of structured systems

    Simulation of Piecewise Smooth Differential Algebraic Equations with Application to Gas Networks

    Get PDF
    Zuweilen wird gefördertes Erdgas als eine Brückentechnologie noch eine Weile erhalten bleiben, aber unsere Gasnetzinfrastruktur hat auch in einer Ära post-fossiler Brennstoffe eine Zukunft, um Klima-neutral erzeugtes Methan, Ammoniak oder Wasserstoff zu transportieren. Damit die Dispatcher der Zukunft, in einer sich fortwährend dynamisierenden Marktsituation, mit sich beständig wechselnden Kleinstanbietern, auch weiterhin einen sicheren Gasnetzbetrieb ermöglichen und garantieren können, werden sie auf moderne, schnelle Simulations- sowie performante Optimierungstechnologie angewiesen sein. Der Schlüssel dazu liegt in einem besseren Verständnis zur numerischen Behandlung nicht differenzierbarer Funktionen und diese Arbeit möchte einen Beitrag hierzu leisten. Wir werden stückweise differenzierbare Funktionen in sog. Abs-Normalen Form betrachten. Durch einen Prozess, der Abs-Linearisierung genannt wird, können wir stückweise lineare Approximationsmodelle erster Ordnung, mittels Techniken der algorithmischen Differentiation erzeugen. Jene Modelle können über Matrizen und Vektoren mittels gängiger Software-Bibliotheken der numerischen linearen Algebra auf Computersystemen ausgedrückt, gespeichert und behandelt werden. Über die Generalisierung der Formel von Faà di Bruno können auch Splinefunktionen höherer Ordnung generiert werden, was wiederum zu Annäherungsmodellen mit besserer Güte führt. Darauf aufbauend lassen sich gemischte Taylor-Kollokationsmethoden, darunter die mit Ordnung zwei konvergente generalisierte Trapezmethode, zur Integration von Gasnetzen, in Form von nicht glatten Algebro-Differentialgleichungssystemen, definieren. Numerische Experimente demonstrieren das Potential. Da solche implizite Integratoren auch nicht lineare und in unserem Falle zugleich auch stückweise differenzierbare Gleichungssysteme erzeugen, die es als Unterproblem zu lösen gilt, werden wir uns auch die stückweise differenzierbare, sowie die stückweise lineare Newtonmethode betrachten.As of yet natural gas will remain as a bridging technology, but our gas grid infrastructure does have a future in a post-fossil fuel era for the transportation of carbon-free produced methane, ammonia or hydrogen. In order for future dispatchers to continue to enable and guarantee safe gas network operations in a continuously changing market situation with constantly switching micro-suppliers, they will be dependent on modern, fast simulation as well as high-performant optimization technology. The key to such a technology resides in a better understanding of the numerical treatment of non-differentiable functions and this work aims to contribute here. We will consider piecewise differentiable functions in so-called abs-normal form. Through a process called abs-linearization, we can generate piecewise linear approximation models of order one, using techniques of algorithmic differentiation. Those models can be expressed, stored and treated numerically as matrices and vectors via common software libraries of numerical linear algebra. Generalizing the Faà di Bruno's formula yields higher order spline functions, which in turn leads to even higher order approximation models. Based on this, mixed Taylor-Collocation methods, including the generalized trapezoidal method converging with an order of two, can be defined for the integration of gas networks represented in terms of non-smooth system of differential algebraic equations. Numerical experiments will demonstrate the potential. Since those implicit integrators do generate non-linear and, in our case, piecewise differentiable systems of equations as sub-problems, it will be necessary to consider the piecewise differentiable, as well as the piecewise linear Newton method in advance

    Existence and multiplicity of solutions to boundary value problems associated with nonlinear first order planar systems

    Get PDF
    The monograph is devoted to the study of nonlinear first order systems in the plane where the principal term is the gradient of a positive and positively 2-homogeneous Hamiltonian (or the convex combination of two of such gradients). After some preliminaries about positively 2-homogeneous autonomous systems, some results of existence and multiplicity of T-periodic solutions are presented in case of bounded or sublinear nonlinear perturbations. Our attention is mainly focused on the occurrence of resonance phenomena, and the corresponding results rely essentially on conditions of Landesman-Lazer or Ahmad-Lazer-Paul type. The techniques used are predominantly topological, exploiting the theory of coincidence degree and the use of the Poincar\ue9-Birkhoff fixed point theorem. At the end, other boundary conditions, including the Sturm-Liouville ones, are taken into account, giving the corresponding existence and multiplicity results in a nonresonant situation via the shooting method and topological arguments
    corecore