6,442 research outputs found

    Quantum oscillations and a non-trivial Berry phase in the noncentrosymmetric superconductor BiPd

    Get PDF
    We report the measurements of de Haas-van Alphen (dHvA) oscillations in the noncentrosymmetric superconductor BiPd. Several pieces of a complex multi-sheet Fermi surface are identified, including a small pocket (frequency 40 T) which is three dimensional and anisotropic. From the temperature dependence of the amplitude of the oscillations, the cyclotron effective mass is (0.180.18 ±\pm 0.1) mem_e. Further analysis showed a non-trivial π\pi-Berry phase is associated with the 40 T pocket, which strongly supports the presence of topological states in bulk BiPd and may result in topological superconductivity due to the proximity coupling to other bands.Comment: 5 pages, 3 figure

    Emergence of intrinsic superconductivity below 1.178 K in the topologically non-trivial semimetal state of CaSn3

    Get PDF
    Topological materials which are also superconducting are of great current interest, since they may exhibit a non-trivial topologically-mediated superconducting phase. Although there have been many reports of pressure-tuned or chemical-doping-induced superconductivity in a variety of topological materials, there have been few examples of intrinsic, ambient pressure superconductivity in a topological system having a stoichiometric composition. Here, we report that the pure intermetallic CaSn3 not only exhibits topological fermion properties but also has a superconducting phase at 1.178 K under ambient pressure. The topological fermion properties, including the nearly zero quasi-particle mass and the non-trivial Berry phase accumulated in cyclotron motions, were revealed from the de Haas-van Alphen (dHvA) quantum oscillation studies of this material. Although CaSn3 was previously reported to be superconducting at 4.2K, our studies show that the superconductivity at 4.2K is extrinsic and caused by Sn on the degraded surface, whereas its intrinsic bulk superconducting transition occurs at 1.178 K. These findings make CaSn3 a promising candidate for exploring new exotic states arising from the interplay between non-trivial band topology and superconductivity, e.g. topological superconductivityComment: 20 pages,4 figure
    • …
    corecore