3,481 research outputs found

    Topological properties of cellular automata on trees

    Get PDF
    We prove that there do not exist positively expansive cellular automata defined on the full k-ary tree shift (for k>=2). Moreover, we investigate some topological properties of these automata and their relationships, namely permutivity, surjectivity, preinjectivity, right-closingness and openness.Comment: In Proceedings AUTOMATA&JAC 2012, arXiv:1208.249

    The Computational Complexity of Symbolic Dynamics at the Onset of Chaos

    Full text link
    In a variety of studies of dynamical systems, the edge of order and chaos has been singled out as a region of complexity. It was suggested by Wolfram, on the basis of qualitative behaviour of cellular automata, that the computational basis for modelling this region is the Universal Turing Machine. In this paper, following a suggestion of Crutchfield, we try to show that the Turing machine model may often be too powerful as a computational model to describe the boundary of order and chaos. In particular we study the region of the first accumulation of period doubling in unimodal and bimodal maps of the interval, from the point of view of language theory. We show that in relation to the ``extended'' Chomsky hierarchy, the relevant computational model in the unimodal case is the nested stack automaton or the related indexed languages, while the bimodal case is modeled by the linear bounded automaton or the related context-sensitive languages.Comment: 1 reference corrected, 1 reference added, minor changes in body of manuscrip

    Combinatorial models of expanding dynamical systems

    Full text link
    We define iterated monodromy groups of more general structures than partial self-covering. This generalization makes it possible to define a natural notion of a combinatorial model of an expanding dynamical system. We prove that a naturally defined "Julia set" of the generalized dynamical systems depends only on the associated iterated monodromy group. We show then that the Julia set of every expanding dynamical system is an inverse limit of simplicial complexes constructed by inductive cut-and-paste rules.Comment: The new version differs substantially from the first one. Many parts are moved to other (mostly future) papers, the main open question of the first version is solve
    corecore