3,207 research outputs found

    Topological model for machining of parts with complex shapes

    Get PDF
    Complex shapes are widely used to design products in several industries such as aeronautics, automotive and domestic appliances. Several variations of their curvatures and orientations generate difficulties during their manufacturing or the machining of dies used in moulding, injection and forging. Analysis of several parts highlights two levels of difficulties between three types of shapes: prismatic parts with simple geometrical shapes, aeronautic structure parts composed of several shallow pockets and forging dies composed of several deep cavities which often contain protrusions. This paper mainly concerns High Speed Machining (HSM) of these dies which represent the highest complexity level because of the shapes' geometry and their topology. Five axes HSM is generally required for such complex shaped parts but 3 axes machining can be sufficient for dies. Evolutions in HSM CAM software and machine tools lead to an important increase in time for machining preparation. Analysis stages of the CAD model particularly induce this time increase which is required for a wise choice of cutting tools and machining strategies. Assistance modules for prismatic parts machining features identification in CAD models are widely implemented in CAM software. In spite of the last CAM evolutions, these kinds of CAM modules are undeveloped for aeronautical structure parts and forging dies. Development of new CAM modules for the extraction of relevant machining areas as well as the definition of the topological relations between these areas must make it possible for the machining assistant to reduce the machining preparation time. In this paper, a model developed for the description of complex shape parts topology is presented. It is based on machining areas extracted for the construction of geometrical features starting from CAD models of the parts. As topology is described in order to assist machining assistant during machining process generation, the difficulties associated with tasks he carried out are analyzed at first. The topological model presented after is based on the basic geometrical features extracted. Topological relations which represent the framework of the model are defined between the basic geometrical features which are gathered afterwards in macro-features. Approach used for the identification of these macro-features is also presented in this paper. Detailed application on the construction of the topological model of forging dies is presented in the last part of the paper

    Machining of complex-shaped parts with guidance curves

    Get PDF
    Nowadays, high-speed machining is usually used for production of hardened material parts with complex shapes such as dies and molds. In such parts, tool paths generated for bottom machining feature with the conventional parallel plane strategy induced many feed rate reductions, especially when boundaries of the feature have a lot of curvatures and are not parallel. Several machining experiments on hardened material lead to the conclusion that a tool path implying stable cutting conditions might guarantee a better part surface integrity. To ensure this stability, the shape machined must be decomposed when conventional strategies are not suitable. In this paper, an experimental approach based on high-speed performance simulation is conducted on a master bottom machining feature in order to highlight the influence of the curvatures towards a suitable decomposition of machining area. The decomposition is achieved through the construction of intermediate curves between the closed boundaries of the feature. These intermediate curves are used as guidance curve for the tool paths generation with an alternative machining strategy called "guidance curve strategy". For the construction of intermediate curves, key parameters reflecting the influence of their proximity with each closed boundary and the influence of the curvatures of this latter are introduced. Based on the results, a method for defining guidance curves in four steps is proposed

    Feature recognition & tool path generation for 5 axis STEP-NC machining of free form / irregular contoured surfaces

    Get PDF
    This research paper presents a five step algorithm to generate tool paths for machining Free form / Irregular Contoured Surface(s) (FICS) by adopting STEP-NC (AP-238) format. In the first step, a parametrized CAD model with FICS is created or imported in UG-NX6.0 CAD package. The second step recognizes the features and calculates a Closeness Index (CI) by comparing them with the B-Splines / Bezier surfaces. The third step utilizes the CI and extracts the necessary data to formulate the blending functions for identified features. In the fourth step Z-level 5 axis tool paths are generated by adopting flat and ball end mill cutters. Finally, in the fifth step, tool paths are integrated with STEP-NC format and validated. All these steps are discussed and explained through a validated industrial component

    Reconstruction of freeform surfaces for metrology

    Get PDF
    The application of freeform surfaces has increased since their complex shapes closely express a product's functional specifications and their machining is obtained with higher accuracy. In particular, optical surfaces exhibit enhanced performance especially when they take aspheric forms or more complex forms with multi-undulations. This study is mainly focused on the reconstruction of complex shapes such as freeform optical surfaces, and on the characterization of their form. The computer graphics community has proposed various algorithms for constructing a mesh based on the cloud of sample points. The mesh is a piecewise linear approximation of the surface and an interpolation of the point set. The mesh can further be processed for fitting parametric surfaces (Polyworks® or Geomagic®). The metrology community investigates direct fitting approaches. If the surface mathematical model is given, fitting is a straight forward task. Nonetheless, if the surface model is unknown, fitting is only possible through the association of polynomial Spline parametric surfaces. In this paper, a comparative study carried out on methods proposed by the computer graphics community will be presented to elucidate the advantages of these approaches. We stress the importance of the pre-processing phase as well as the significance of initial conditions. We further emphasize the importance of the meshing phase by stating that a proper mesh has two major advantages. First, it organizes the initially unstructured point set and it provides an insight of orientation, neighbourhood and curvature, and infers information on both its geometry and topology. Second, it conveys a better segmentation of the space, leading to a correct patching and association of parametric surfaces.EMR

    Features and design intent in engineering sketches

    Get PDF
    We investigate the problem of determining design intent from engineering sketches: what did the designer have in mind when sketching a component? Specifically, we consider the unidirectional reverse mapping from form features, as determined from an input sketch, to design features, representing the design intent present in the designer’s mind. We introduce a list of com- mon engineering form features. For each, we list which geometrical cues may be helpful in identifying these features in design sketches, and we list the design features which such form features commonly imply. We show that a reductionist approach which decomposes a diagram into form features can be used to deduce the design intent of the object portrayed in a drawing. We supply experimental results in support of this idea
    • …
    corecore