2,785 research outputs found

    Forman-Ricci flow for change detection in large dynamic data sets

    Full text link
    We present a viable solution to the challenging question of change detection in complex networks inferred from large dynamic data sets. Building on Forman's discretization of the classical notion of Ricci curvature, we introduce a novel geometric method to characterize different types of real-world networks with an emphasis on peer-to-peer networks. Furthermore we adapt the classical Ricci flow that already proved to be a powerful tool in image processing and graphics, to the case of undirected and weighted networks. The application of the proposed method on peer-to-peer networks yields insights into topological properties and the structure of their underlying data.Comment: Conference paper, accepted at ICICS 2016. (Updated version

    Comparative analysis of two discretizations of Ricci curvature for complex networks

    Full text link
    We have performed an empirical comparison of two distinct notions of discrete Ricci curvature for graphs or networks, namely, the Forman-Ricci curvature and Ollivier-Ricci curvature. Importantly, these two discretizations of the Ricci curvature were developed based on different properties of the classical smooth notion, and thus, the two notions shed light on different aspects of network structure and behavior. Nevertheless, our extensive computational analysis in a wide range of both model and real-world networks shows that the two discretizations of Ricci curvature are highly correlated in many networks. Moreover, we show that if one considers the augmented Forman-Ricci curvature which also accounts for the two-dimensional simplicial complexes arising in graphs, the observed correlation between the two discretizations is even higher, especially, in real networks. Besides the potential theoretical implications of these observations, the close relationship between the two discretizations has practical implications whereby Forman-Ricci curvature can be employed in place of Ollivier-Ricci curvature for faster computation in larger real-world networks whenever coarse analysis suffices.Comment: Published version. New results added in this version. Supplementary tables can be freely downloaded from the publisher websit

    The Large Scale Curvature of Networks

    Full text link
    Understanding key structural properties of large scale networks are crucial for analyzing and optimizing their performance, and improving their reliability and security. Here we show that these networks possess a previously unnoticed feature, global curvature, which we argue has a major impact on core congestion: the load at the core of a network with N nodes scales as N^2 as compared to N^1.5 for a flat network. We substantiate this claim through analysis of a collection of real data networks across the globe as measured and documented by previous researchers.Comment: 4 pages, 5 figure

    Hidden geometries in networks arising from cooperative self-assembly

    Get PDF
    Multilevel self-assembly involving small structured groups of nano-particles provides new routes to development of functional materials with a sophisticated architecture. Apart from the inter-particle forces, the geometrical shapes and compatibility of the building blocks are decisive factors in each phase of growth. Therefore, a comprehensive understanding of these processes is essential for the design of large assemblies of desired properties. Here, we introduce a computational model for cooperative self-assembly with simultaneous attachment of structured groups of particles, which can be described by simplexes (connected pairs, triangles, tetrahedrons and higher order cliques) to a growing network, starting from a small seed. The model incorporates geometric rules that provide suitable nesting spaces for the new group and the chemical affinity ν\nu of the system to accepting an excess number of particles. For varying chemical affinity, we grow different classes of assemblies by binding the cliques of distributed sizes. Furthermore, to characterise the emergent large-scale structures, we use the metrics of graph theory and algebraic topology of graphs, and 4-point test for the intrinsic hyperbolicity of the networks. Our results show that higher Q-connectedness of the appearing simplicial complexes can arise due to only geometrical factors, i.e., for ν=0\nu = 0, and that it can be effectively modulated by changing the chemical potential and the polydispersity of the size of binding simplexes. For certain parameters in the model we obtain networks of mono-dispersed clicks, triangles and tetrahedrons, which represent the geometrical descriptors that are relevant in quantum physics and frequently occurring chemical clusters.Comment: 9 pages, 8 figure

    Emergent Complex Network Geometry

    Get PDF
    Networks are mathematical structures that are universally used to describe a large variety of complex systems such as the brain or the Internet. Characterizing the geometrical properties of these networks has become increasingly relevant for routing problems, inference and data mining. In real growing networks, topological, structural and geometrical properties emerge spontaneously from their dynamical rules. Nevertheless we still miss a model in which networks develop an emergent complex geometry. Here we show that a single two parameter network model, the growing geometrical network, can generate complex network geometries with non-trivial distribution of curvatures, combining exponential growth and small-world properties with finite spectral dimensionality. In one limit, the non-equilibrium dynamical rules of these networks can generate scale-free networks with clustering and communities, in another limit planar random geometries with non-trivial modularity. Finally we find that these properties of the geometrical growing networks are present in a large set of real networks describing biological, social and technological systems.Comment: (24 pages, 7 figures, 1 table

    Deterministic Dynamics and Chaos: Epistemology and Interdisciplinary Methodology

    Full text link
    We analyze, from a theoretical viewpoint, the bidirectional interdisciplinary relation between mathematics and psychology, focused on the mathematical theory of deterministic dynamical systems, and in particular, on the theory of chaos. On one hand, there is the direct classic relation: the application of mathematics to psychology. On the other hand, we propose the converse relation which consists in the formulation of new abstract mathematical problems appearing from processes and structures under research of psychology. The bidirectional multidisciplinary relation from-to pure mathematics, largely holds with the "hard" sciences, typically physics and astronomy. But it is rather new, from the social and human sciences, towards pure mathematics
    corecore