840 research outputs found

    Mixing in turbulent jets: scalar measures and isosurface geometry

    Get PDF
    Experiments have been conducted to investigate mixing and the geometry of scalar isosurfaces in turbulent jets. Specifically, we have obtained high-resolution, high-signal-to-noise-ratio images of the jet-fluid concentration in the far field of round, liquid-phase, turbulent jets, in the Reynolds number range 4.5 × 10^3 ≤ Re ≤ 18 × 10^3, using laser-induced-fluorescence imaging techniques. Analysis of these data indicates that this Reynolds-number range spans a mixing transition in the far field of turbulent jets. This is manifested in the probability-density function of the scalar field, as well as in measures of the scalar isosurfaces. Classical as well as fractal measures of these isosurfaces have been computed, from small to large spatial scales, and are found to be functions of both scalar threshold and Reynolds number. The coverage of level sets of jet-fluid concentration in the two-dimensional images is found to possess a scale-dependent-fractal dimension that increases continuously with increasing scale, from near unity, at the smallest scales, to 2, at the largest scales. The geometry of the scalar isosurfaces is, therefore, more complex than power-law fractal, exhibiting an increasing complexity with increasing scale. This behaviour necessitates a scale-dependent generalization of power-law-fractal geometry. A connection between scale-dependent-fractal geometry and the distribution of scales is established and used to compute the distribution of spatial scales in the flow

    Design and Topology Optimisation of Tissue Scaffolds

    Get PDF
    Tissue restoration by tissue scaffolding is an emerging technique with many potential applications. While it is well-known that the structural properties of tissue scaffolds play a critical role in cell regrowth, it is usually unclear how optimal tissue regeneration can be achieved. This thesis hereby presents a computational investigation of tissue scaffold design and optimisation. This study proposes an isosurface-based characterisation and optimisation technique for the design of microscopic architecture, and a porosity-based approach for the design of macroscopic structure. The goal of this study is to physically define the optimal tissue scaffold construct, and to establish any link between cell viability and scaffold architecture. Single-objective and multi-objective topology optimisation was conducted at both microscopic and macroscopic scales to determine the ideal scaffold design. A high quality isosurface modelling technique was formulated and automated to define the microstructure in stereolithography format. Periodic structures with maximised permeability, and theoretically maximum diffusivity and bulk modulus were found using a modified level set method. Microstructures with specific effective diffusivity were also created by means of inverse homogenisation. Cell viability simulation was subsequently conducted to show that the optimised microstructures offered a more viable environment than those with random microstructure. The cell proliferation outcome in terms of cell number and survival rate was also improved through the optimisation of the macroscopic porosity profile. Additionally artificial vascular systems were created and optimised to enhance diffusive nutrient transport. The formation of vasculature in the optimisation process suggests that natural vascular systems acquire their fractal shapes through self-optimisation

    Design and Topology Optimisation of Tissue Scaffolds

    Get PDF
    Tissue restoration by tissue scaffolding is an emerging technique with many potential applications. While it is well-known that the structural properties of tissue scaffolds play a critical role in cell regrowth, it is usually unclear how optimal tissue regeneration can be achieved. This thesis hereby presents a computational investigation of tissue scaffold design and optimisation. This study proposes an isosurface-based characterisation and optimisation technique for the design of microscopic architecture, and a porosity-based approach for the design of macroscopic structure. The goal of this study is to physically define the optimal tissue scaffold construct, and to establish any link between cell viability and scaffold architecture. Single-objective and multi-objective topology optimisation was conducted at both microscopic and macroscopic scales to determine the ideal scaffold design. A high quality isosurface modelling technique was formulated and automated to define the microstructure in stereolithography format. Periodic structures with maximised permeability, and theoretically maximum diffusivity and bulk modulus were found using a modified level set method. Microstructures with specific effective diffusivity were also created by means of inverse homogenisation. Cell viability simulation was subsequently conducted to show that the optimised microstructures offered a more viable environment than those with random microstructure. The cell proliferation outcome in terms of cell number and survival rate was also improved through the optimisation of the macroscopic porosity profile. Additionally artificial vascular systems were created and optimised to enhance diffusive nutrient transport. The formation of vasculature in the optimisation process suggests that natural vascular systems acquire their fractal shapes through self-optimisation

    Volume-Enclosing Surface Extraction

    Full text link
    In this paper we present a new method, which allows for the construction of triangular isosurfaces from three-dimensional data sets, such as 3D image data and/or numerical simulation data that are based on regularly shaped, cubic lattices. This novel volume-enclosing surface extraction technique, which has been named VESTA, can produce up to six different results due to the nature of the discretized 3D space under consideration. VESTA is neither template-based nor it is necessarily required to operate on 2x2x2 voxel cell neighborhoods only. The surface tiles are determined with a very fast and robust construction technique while potential ambiguities are detected and resolved. Here, we provide an in-depth comparison between VESTA and various versions of the well-known and very popular Marching Cubes algorithm for the very first time. In an application section, we demonstrate the extraction of VESTA isosurfaces for various data sets ranging from computer tomographic scan data to simulation data of relativistic hydrodynamic fireball expansions.Comment: 24 pages, 33 figures, 4 tables, final versio

    An Overview of Rendering from Volume Data --- including Surface and Volume Rendering

    Get PDF
    Volume rendering is a title often ambiguously used in science. One meaning often quoted is: `to render any three volume dimensional data set'; however, within this categorisation `surface rendering'' is contained. Surface rendering is a technique for visualising a geometric representation of a surface from a three dimensional volume data set. A more correct definition of Volume Rendering would only incorporate the direct visualisation of volumes, without the use of intermediate surface geometry representations. Hence we state: `Volume Rendering is the Direct Visualisation of any three dimensional Volume data set; without the use of an intermediate geometric representation for isosurfaces'; `Surface Rendering is the Visualisation of a surface, from a geometric approximation of an isosurface, within a Volume data set'; where an isosurface is a surface formed from a cross connection of data points, within a volume, of equal value or density. This paper is an overview of both Surface Rendering and Volume Rendering techniques. Surface Rendering mainly consists of contouring lines over data points and triangulations between contours. Volume rendering methods consist of ray casting techniques that allow the ray to be cast from the viewing plane into the object and the transparency, opacity and colour calculated for each cell; the rays are often cast until an opaque object is `hit' or the ray exits the volume

    Doctor of Philosophy

    Get PDF
    dissertationIn this dissertation, we advance the theory and practice of verifying visualization algorithms. We present techniques to assess visualization correctness through testing of important mathematical properties. Where applicable, these techniques allow us to distinguish whether anomalies in visualization features can be attributed to the underlying physical process or to artifacts from the implementation under verification. Such scientific scrutiny is at the heart of verifiable visualization - subjecting visualization algorithms to the same verification process that is used in other components of the scientific pipeline. The contributions of this dissertation are manifold. We derive the mathematical framework for the expected behavior of several visualization algorithms, and compare them to experimentally observed results in the selected codes. In the Computational Science & Engineering community CS&E, this technique is know as the Method of Manufactured Solution (MMS). We apply MMS to the verification of geometrical and topological properties of isosurface extraction algorithms, and direct volume rendering. We derive the convergence of geometrical properties of isosurface extraction techniques, such as function value and normals. For the verification of topological properties, we use stratified Morse theory and digital topology to design algorithms that verify topological invariants. In the case of volume rendering algorithms, we provide the expected discretization errors for three different error sources. The results of applying the MMS is another important contribution of this dissertation. We report unexpected behavior for almost all implementations tested. In some cases, we were able to find and fix bugs that prevented the correctness of the visualization algorithm. In particular, we address an almost 2 0 -year-old bug with the core disambiguation procedure of Marching Cubes 33, one of the first algorithms intended to preserve the topology of the trilinear interpolant. Finally, an important by-product of this work is a range of responses practitioners can expect to encounter with the visualization technique under verification
    • …
    corecore