7 research outputs found

    Finite Resolution Dynamics

    Full text link
    We develop a new mathematical model for describing a dynamical system at limited resolution (or finite scale), and we give precise meaning to the notion of a dynamical system having some property at all resolutions coarser than a given number. Open covers are used to approximate the topology of the phase space in a finite way, and the dynamical system is represented by means of a combinatorial multivalued map. We formulate notions of transitivity and mixing in the finite resolution setting in a computable and consistent way. Moreover, we formulate equivalent conditions for these properties in terms of graphs, and provide effective algorithms for their verification. As an application we show that the Henon attractor is mixing at all resolutions coarser than 10^-5.Comment: 25 pages. Final version. To appear in Foundations of Computational Mathematic

    A study of the sensitivity of topological dynamical systems and the Fourier spectrum of chaotic interval maps

    Get PDF
    We study some topological properties of dynamical systems. In particular the rela- tionship between spatio-temporal chaotic and Li-Yorke sensitive dynamical systems establishing that for minimal dynamical systems those properties are equivalent. In the same direction we show that being a Li-Yorke sensitive dynamical system implies that the system is also Li-Yorke chaotic. On the other hand we survey the possibility of lifting some topological properties from a given dynamical system (Y, S) to an- other (X, T). After studying some basic facts about topological dynamical systems, we move to the particular case of interval maps. We know that through the knowl- edge of interval maps, f : I → I, precious information about the chaotic behavior of general nonlinear dynamical systems can be obtained. It is also well known that the analysis of the spectrum of time series encloses important material related to the signal itself. In this work we look for possible connections between chaotic dynamical systems and the behavior of its Fourier coefficients. We have found that a natural bridge between these two concepts is given by the total variation of a function and its connection with the topological entropy associated to the n-th iteration, fn(x), of the map. Working in a natural way using the Sobolev spaces Wp,q(I) we show how the Fourier coefficients are related to the chaoticity of interval maps

    Dynamical Systems and Matching Symmetry in beta-Expansions

    Get PDF
    Symbolic dynamics, and in particular β-expansions, are a ubiquitous tool in studying more complicated dynamical systems. Applications include number theory, fractals, information theory, and data storage. In this thesis we will explore the basics of dynamical systems with a special focus on topological dynamics. We then examine symbolic dynamics and β-transformations through the lens of sequence spaces. We discuss observations from recent literature about how matching (the property that the itinerary of 0 and 1 coincide after some number of iterations) is linked to when Tβ,⍺ generates a subshift of finite type. We prove the set of ⍺ in the parameter space for which Tβ,⍺ exhibits matching is symmetric and analyze some examples where the symmetry is both apparent and useful in finding a dense set of ⍺ for which Tβ,⍺ generates a subshift of finite type

    Subshifts with Simple Cellular Automata

    Get PDF
    A subshift is a set of infinite one- or two-way sequences over a fixed finite set, defined by a set of forbidden patterns. In this thesis, we study subshifts in the topological setting, where the natural morphisms between them are ones defined by a (spatially uniform) local rule. Endomorphisms of subshifts are called cellular automata, and we call the set of cellular automata on a subshift its endomorphism monoid. It is known that the set of all sequences (the full shift) allows cellular automata with complex dynamical and computational properties. We are interested in subshifts that do not support such cellular automata. In particular, we study countable subshifts, minimal subshifts and subshifts with additional universal algebraic structure that cellular automata need to respect, and investigate certain criteria of ‘simplicity’ of the endomorphism monoid, for each of them. In the case of countable subshifts, we concentrate on countable sofic shifts, that is, countable subshifts defined by a finite state automaton. We develop some general tools for studying cellular automata on such subshifts, and show that nilpotency and periodicity of cellular automata are decidable properties, and positive expansivity is impossible. Nevertheless, we also prove various undecidability results, by simulating counter machines with cellular automata. We prove that minimal subshifts generated by primitive Pisot substitutions only support virtually cyclic automorphism groups, and give an example of a Toeplitz subshift whose automorphism group is not finitely generated. In the algebraic setting, we study the centralizers of CA, and group and lattice homomorphic CA. In particular, we obtain results about centralizers of symbol permutations and bipermutive CA, and their connections with group structures.Siirretty Doriast

    Symbolic dynamics and the stable algebra of matrices

    Full text link
    We give an introduction to the "stable algebra of matrices" as related to certain problems in symbolic dynamics. We consider this stable algebra (especially, shift equivalence and strong shift equivalence) for matrices over general rings as well as various specific rings. This algebra is of independent interest and can be followed with little attention to the symbolic dynamics. We include strong connectionsto algebraic K-theory and the inverse spectral problem for nonnegative matrices. We also review key features of the automorphism group of a shift of finite type, and the work of Kim, Roush and Wagoner giving counterexamples to Williams' Shift Equivalence Conjecture.Comment: 121 pages. Main changes from version 1: Author and subject indices were added. Various citations were added, with commentary. Bibliography items are now listed with internal references (i.e., pages of the paper on which they are cited

    Aspects of Ergodic, Qualitative and Statistical Theory of Motion

    Full text link
    corecore