9,438 research outputs found

    Spontaneous magnetization and anomalous Hall effect in an emergent Dice lattice

    Get PDF
    Ultracold atoms in optical lattices serve as a tool to model different physical phenomena appearing originally in condensed matter. To study magnetic phenomena one needs to engineer synthetic fields as atoms are neutral. Appropriately shaped optical potentials force atoms to mimic charged particles moving in a given field. We present the realization of artificial gauge fields for the observation of anomalous Hall effect. Two species of attractively interacting ultracold fermions are considered to be trapped in a shaken two dimensional triangular lattice. A combination of interaction induced tunneling and shaking can result in an emergent Dice lattice. In such a lattice the staggered synthetic magnetic flux appears and it can be controlled with external parameters. The obtained synthetic fields are non-Abelian. Depending on the tuning of the staggered flux we can obtain either anomalous Hall effect or its quantized version. Our results are reminiscent of Anomalous Hall conductivity in spin-orbit coupled ferromagnets.Comment: modified versio

    Improved Smoothing Algorithms for Lattice Gauge Theory

    Get PDF
    The relative smoothing rates of various gauge field smoothing algorithms are investigated on O(a2){\cal O}(a^2)-improved \suthree Yang--Mills gauge field configurations. In particular, an O(a2){\cal O}(a^2)-improved version of APE smearing is motivated by considerations of smeared link projection and cooling. The extent to which the established benefits of improved cooling carry over to improved smearing is critically examined. We consider representative gauge field configurations generated with an O(a2){\cal O}(a^2)-improved gauge field action on \1 lattices at β=4.38\beta=4.38 and \2 lattices at β=5.00\beta=5.00 having lattice spacings of 0.165(2) fm and 0.077(1) fm respectively. While the merits of improved algorithms are clearly displayed for the coarse lattice spacing, the fine lattice results put the various algorithms on a more equal footing and allow a quantitative calibration of the smoothing rates for the various algorithms. We find the relative rate of variation in the action may be succinctly described in terms of simple calibration formulae which accurately describe the relative smoothness of the gauge field configurations at a microscopic level

    Continuous cellular automata on irregular tessellations : mimicking steady-state heat flow

    Get PDF
    Leaving a few exceptions aside, cellular automata (CA) and the intimately related coupled-map lattices (CML), commonly known as continuous cellular automata (CCA), as well as models that are based upon one of these paradigms, employ a regular tessellation of an Euclidean space in spite of the various drawbacks this kind of tessellation entails such as its inability to cover surfaces with an intricate geometry, or the anisotropy it causes in the simulation results. Recently, a CCA-based model describing steady-state heat flow has been proposed as an alternative to Laplace's equation that is, among other things, commonly used to describe this process, yet, also this model suffers from the aforementioned drawbacks since it is based on the classical CCA paradigm. To overcome these problems, we first conceive CCA on irregular tessellations of an Euclidean space after which we show how the presented approach allows a straightforward simulation of steady-state heat flow on surfaces with an intricate geometry, and, as such, constitutes an full-fledged alternative for the commonly used and easy-to-implement finite difference method, and the more intricate finite element method

    Three dimensional resonating valence bond liquids and their excitations

    Full text link
    We show that there are two types of RVB liquid phases present in three-dimensional quantum dimer models, corresponding to the deconfining phases of U(1) and Z_2 gauge theories in d=3+1. The former is found on the bipartite cubic lattice and is the generalization of the critical point in the square lattice quantum dimer model found originally by Rokhsar and Kivelson. The latter exists on the non-bipartite face-centred cubic lattice and generalizes the RVB phase found earlier by us on the triangular lattice. We discuss the excitation spectrum and the nature of the ordering in both cases. Both phases exhibit gapped spinons. In the U(1) case we find a collective, linearly dispersing, transverse excitation, which is the photon of the low energy Maxwell Lagrangian and we identify the ordering as quantum order in Wen's sense. In the Z_2 case all collective excitations are gapped and, as in d=2, the low energy description of this topologically ordered state is the purely topological BF action. As a byproduct of this analysis, we unearth a further gapless excitation, the pi0n, in the square lattice quantum dimer model at its critical point.Comment: 9 pages, 2 figure

    Short-ranged RVB physics, quantum dimer models and Ising gauge theories

    Full text link
    Quantum dimer models are believed to capture the essential physics of antiferromagnetic phases dominated by short-ranged valence bond configurations. We show that these models arise as particular limits of Ising (Z_2) gauge theories, but that in these limits the system develops a larger local U(1) invariance that has different consequences on different lattices. Conversely, we note that the standard Z_2 gauge theory is a generalised quantum dimer model, in which the particular relaxation of the hardcore constraint for the dimers breaks the U(1) down to Z_2. These mappings indicate that at least one realization of the Senthil-Fisher proposal for fractionalization is exactly the short ranged resonating valence bond (RVB) scenario of Anderson and of Kivelson, Rokhsar and Sethna. They also suggest that other realizations will require the identification of a local low energy, Ising link variable {\it and} a natural constraint. We also discuss the notion of topological order in Z_2 gauge theories and its connection to earlier ideas in RVB theory. We note that this notion is not central to the experiment proposed by Senthil and Fisher to detect vortices in the conjectured Z_2 gauge field.Comment: 17 pages, 4 postscript figures automatically include
    corecore