743 research outputs found

    The 2010 UK Home Office ‘Sexualisation of Young People’ Review: a discursive policy analysis

    Get PDF
    This paper offers a discursive policy analysis of the 2010 UK Home Office Sexualisation of Young People Review, authored by Linda Papadopoulos (2010a). It will scrutinise the narrative presented by the text of the danger posed by cultural representations to healthy development, and trace the way that the text links this danger to catastrophic outcomes: child sexual abuse, exploitation and trafficking. Examining this narrative, the article will propose that the UK Review deploys spatial metaphors to naturalise a gendered account of childhood, sexuality and danger, evoking the creeping influence of a corrupting culture on a girl's most private self. The article will also demonstrate that this spatial narrative underpins the epistemological structure of the text – its separation of the primary from the secondary, the real from the artificial

    Quantum Observables Algebras and Abstract Differential Geometry: The Topos-Theoretic Dynamics of Diagrams of Commutative Algebraic Localizations

    Full text link
    We construct a sheaf-theoretic representation of quantum observables algebras over a base category equipped with a Grothendieck topology, consisting of epimorphic families of commutative observables algebras, playing the role of local arithmetics in measurement situations. This construction makes possible the adaptation of the methodology of Abstract Differential Geometry (ADG), a la Mallios, in a topos-theoretic environment, and hence, the extension of the "mechanism of differentials" in the quantum regime. The process of gluing information, within diagrams of commutative algebraic localizations, generates dynamics, involving the transition from the classical to the quantum regime, formulated cohomologically in terms of a functorial quantum connection, and subsequently, detected via the associated curvature of that connection.Comment: 81 pages, replaced by expanded published versio

    The Riddle of Gravitation

    Full text link
    There is no doubt that both the special and general theories of relativity capture the imagination. The anti-intuitive properties of the special theory of relativity and its deep philosophical implications, the bizzare and dazzling predictions of the general theory of relativity: the curvature of spacetime, the exotic characteristics of black holes, the bewildering prospects of gravitational waves, the discovery of astronomical objects as quasers and pulsers, the expansion and the (possible) recontraction of the universe..., are all breathtaking phenomena. In this paper, we give a philosophical non-technical treatment of both the special and the general theory of relativity together with an exposition of some of the latest physical theories. We then give an outline of an axiomatic approach to relativity theories due to Andreka and Nemeti that throws light on the logical structure of both theories. This is followed by an exposition of some of the bewildering results established by Andreka and Nemeti concerning the foundations of mathematics using the notion of relativistic computers. We next give a survey on the meaning and philosophical implications of the the quantum theory and end the paper by an imaginary debate between Einstein and Neils Bohr reflecting both Einstein's and Bohr's philosophical views on the quantum world. The paper is written in a somewhat untraditional manner; there are too many footnotes. In order not to burden the reader with all the details, we have collected the more advanced material the footnotes. We think that this makes the paper easier to read and simpler to follow. The paper in full is adressed more to experts.Comment: 40 pages, LaTeX-fil

    Categorical Ontology of Complex Systems, Meta-Systems and Theory of Levels: The Emergence of Life, Human Consciousness and Society

    Get PDF
    Single cell interactomics in simpler organisms, as well as somatic cell interactomics in multicellular organisms, involve biomolecular interactions in complex signalling pathways that were recently represented in modular terms by quantum automata with ‘reversible behavior’ representing normal cell cycling and division. Other implications of such quantum automata, modular modeling of signaling pathways and cell differentiation during development are in the fields of neural plasticity and brain development leading to quantum-weave dynamic patterns and specific molecular processes underlying extensive memory, learning, anticipation mechanisms and the emergence of human consciousness during the early brain development in children. Cell interactomics is here represented for the first time as a mixture of ‘classical’ states that determine molecular dynamics subject to Boltzmann statistics and ‘steady-state’, metabolic (multi-stable) manifolds, together with ‘configuration’ spaces of metastable quantum states emerging from complex quantum dynamics of interacting networks of biomolecules, such as proteins and nucleic acids that are now collectively defined as quantum interactomics. On the other hand, the time dependent evolution over several generations of cancer cells --that are generally known to undergo frequent and extensive genetic mutations and, indeed, suffer genomic transformations at the chromosome level (such as extensive chromosomal aberrations found in many colon cancers)-- cannot be correctly represented in the ‘standard’ terms of quantum automaton modules, as the normal somatic cells can. This significant difference at the cancer cell genomic level is therefore reflected in major changes in cancer cell interactomics often from one cancer cell ‘cycle’ to the next, and thus it requires substantial changes in the modeling strategies, mathematical tools and experimental designs aimed at understanding cancer mechanisms. Novel solutions to this important problem in carcinogenesis are proposed and experimental validation procedures are suggested. From a medical research and clinical standpoint, this approach has important consequences for addressing and preventing the development of cancer resistance to medical therapy in ongoing clinical trials involving stage III cancer patients, as well as improving the designs of future clinical trials for cancer treatments.\ud \ud \ud KEYWORDS: Emergence of Life and Human Consciousness;\ud Proteomics; Artificial Intelligence; Complex Systems Dynamics; Quantum Automata models and Quantum Interactomics; quantum-weave dynamic patterns underlying human consciousness; specific molecular processes underlying extensive memory, learning, anticipation mechanisms and human consciousness; emergence of human consciousness during the early brain development in children; Cancer cell ‘cycling’; interacting networks of proteins and nucleic acids; genetic mutations and chromosomal aberrations in cancers, such as colon cancer; development of cancer resistance to therapy; ongoing clinical trials involving stage III cancer patients’ possible improvements of the designs for future clinical trials and cancer treatments. \ud \u
    • 

    corecore