485 research outputs found

    Plastid trnF pseudogenes are present in Jaltomata, the sister genus of Solanum (Solanaceae) : molecular evolution of tandemly repeated structural mutations

    Get PDF
    Extensive gene duplication arranged in a tandem array is rare in the plastome of embryophytes. Interestingly, we found pseudogene copies of the trnF gene in the genus Jaltomata, the sister genus of Solanum where such gene duplication has been previously reported. In each Jaltomata sequence available we found two pseudogene copies in close 5’-proximity to the original functional gene. The size of each pseudogene copy ranged between 17 and 48 bp and the anticodon domain was identified as the most conserved element. A common ATT(G)n motif is particularly interesting and its modifications were found to border the 3’ of the duplicated regions. Other motifs were partial residues, or entire parts of the T- and D-domains, and both domains proved to be variable in length among the pseudogenes identified. The residues of the 3’ and 5’ acceptor stem were not found among the copies. We further compared the newly discovered copies of Jaltomata with those ones previously described from Solanum and inferred phylogenetic relationships of the copies aligned. The evolution of Solanum copies, in contrast to Jaltomata, is hard to explain as resulting only in parsimonious changes since reticulate evolutionary patterns were detected among the copies. The dynamic evolutionary patterns of Solanum might be explained by possible inter- or intrachromosomal recombination.Peer reviewe

    Bacterial microevolution and the Pangenome

    Get PDF
    The comparison of multiple genome sequences sampled from a bacterial population reveals considerable diversity in both the core and the accessory parts of the pangenome. This diversity can be analysed in terms of microevolutionary events that took place since the genomes shared a common ancestor, especially deletion, duplication, and recombination. We review the basic modelling ingredients used implicitly or explicitly when performing such a pangenome analysis. In particular, we describe a basic neutral phylogenetic framework of bacterial pangenome microevolution, which is not incompatible with evaluating the role of natural selection. We survey the different ways in which pangenome data is summarised in order to be included in microevolutionary models, as well as the main methodological approaches that have been proposed to reconstruct pangenome microevolutionary history

    Integrated multiple sequence alignment

    Get PDF
    Sammeth M. Integrated multiple sequence alignment. Bielefeld (Germany): Bielefeld University; 2005.The thesis presents enhancements for automated and manual multiple sequence alignment: existing alignment algorithms are made more easily accessible and new algorithms are designed for difficult cases. Firstly, we introduce the QAlign framework, a graphical user interface for multiple sequence alignment. It comprises several state-of-the-art algorithms and supports their parameters by convenient dialogs. An alignment viewer with guided editing functionality can also highlight or print regions of the alignment. Also phylogenetic features are provided, e.g., distance-based tree reconstruction methods, corrections for multiple substitutions and a tree viewer. The modular concept and the platform-independent implementation guarantee an easy extensibility. Further, we develop a constrained version of the divide-and-conquer alignment such that it can be restricted by anchors found earlier with local alignments. It can be shown that this method shares attributes of both, local and global aligners, in the quality of results as well as in the computation time. We further modify the local alignment step to work on bipartite (or even multipartite) sets for sequences where repeats overshadow valuable sequence information. In the end a technique is established that can accurately align sequences containing eventually repeated motifs. Finally, another algorithm is presented that allows to compare tandem repeat sequences by aligning them with respect to their possible repeat histories. We describe an evolutionary model including tandem duplications and excisions, and give an exact algorithm to compare two sequences under this model

    Telomeric expression sites are highly conserved in trypanosoma brucei

    Get PDF
    Subtelomeric regions are often under-represented in genome sequences of eukaryotes. One of the best known examples of the use of telomere proximity for adaptive purposes are the bloodstream expression sites (BESs) of the African trypanosome Trypanosoma brucei. To enhance our understanding of BES structure and function in host adaptation and immune evasion, the BES repertoire from the Lister 427 strain of T. brucei were independently tagged and sequenced. BESs are polymorphic in size and structure but reveal a surprisingly conserved architecture in the context of extensive recombination. Very small BESs do exist and many functioning BESs do not contain the full complement of expression site associated genes (ESAGs). The consequences of duplicated or missing ESAGs, including ESAG9, a newly named ESAG12, and additional variant surface glycoprotein genes (VSGs) were evaluated by functional assays after BESs were tagged with a drug-resistance gene. Phylogenetic analysis of constituent ESAG families suggests that BESs are sequence mosaics and that extensive recombination has shaped the evolution of the BES repertoire. This work opens important perspectives in understanding the molecular mechanisms of antigenic variation, a widely used strategy for immune evasion in pathogens, and telomere biology

    Evolution of C2H2-zinc finger genes and subfamilies in mammals: Species-specific duplication and loss of clusters, genes and effector domains

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>C2H2 zinc finger genes (C2H2-ZNF) constitute the largest class of transcription factors in humans and one of the largest gene families in mammals. Often arranged in clusters in the genome, these genes are thought to have undergone a massive expansion in vertebrates, primarily by tandem duplication. However, this view is based on limited datasets restricted to a single chromosome or a specific subset of genes belonging to the large KRAB domain-containing C2H2-ZNF subfamily.</p> <p>Results</p> <p>Here, we present the first comprehensive study of the evolution of the C2H2-ZNF family in mammals. We assembled the complete repertoire of human C2H2-ZNF genes (718 in total), about 70% of which are organized into 81 clusters across all chromosomes. Based on an analysis of their N-terminal effector domains, we identified two new C2H2-ZNF subfamilies encoding genes with a SET or a HOMEO domain. We searched for the syntenic counterparts of the human clusters in other mammals for which complete gene data are available: chimpanzee, mouse, rat and dog. Cross-species comparisons show a large variation in the numbers of C2H2-ZNF genes within homologous mammalian clusters, suggesting differential patterns of evolution. Phylogenetic analysis of selected clusters reveals that the disparity in C2H2-ZNF gene repertoires across mammals not only originates from differential gene duplication but also from gene loss. Further, we discovered variations among orthologs in the number of zinc finger motifs and association of the effector domains, the latter often undergoing sequence degeneration. Combined with phylogenetic studies, physical maps and an analysis of the exon-intron organization of genes from the SCAN and KRAB domains-containing subfamilies, this result suggests that the SCAN subfamily emerged first, followed by the SCAN-KRAB and finally by the KRAB subfamily.</p> <p>Conclusion</p> <p>Our results are in agreement with the "birth and death hypothesis" for the evolution of C2H2-ZNF genes, but also show that this hypothesis alone cannot explain the considerable evolutionary variation within the subfamilies of these genes in mammals. We, therefore, propose a new model involving the interdependent evolution of C2H2-ZNF gene subfamilies.</p

    Surveying alignment-free features for Ortholog detection in related yeast proteomes by using supervised big data classifiers

    Get PDF
    Abstract Background: The development of new ortholog detection algorithms and the improvement of existing ones are of major importance in functional genomics. We have previously introduced a successful supervised pairwise ortholog classification approach implemented in a big data platform that considered several pairwise protein features and the low ortholog pair ratios found between two annotated proteomes (Galpert, D et al., BioMed Research International, 2015). The supervised models were built and tested using a Saccharomycete yeast benchmark dataset proposed by Salichos and Rokas (2011). Despite several pairwise protein features being combined in a supervised big data approach; they all, to some extent were alignment-based features and the proposed algorithms were evaluated on a unique test set. Here, we aim to evaluate the impact of alignment-free features on the performance of supervised models implemented in the Spark big data platform for pairwise ortholog detection in several related yeast proteomes. Results: The Spark Random Forest and Decision Trees with oversampling and undersampling techniques, and built with only alignment-based similarity measures or combined with several alignment-free pairwise protein features showed the highest classification performance for ortholog detection in three yeast proteome pairs. Although such supervised approaches outperformed traditional methods, there were no significant differences between the exclusive use of alignment-based similarity measures and their combination with alignment-free features, even within the twilight zone of the studied proteomes. Just when alignment-based and alignment-free features were combined in Spark Decision Trees with imbalance management, a higher success rate (98.71%) within the twilight zone could be achieved for a yeast proteome pair that underwent a whole genome duplication. The feature selection study showed that alignment-based features were top-ranked for the best classifiers while the runners-up were alignment-free features related to amino acid composition. Conclusions: The incorporation of alignment-free features in supervised big data models did not significantly improve ortholog detection in yeast proteomes regarding the classification qualities achieved with just alignment-based similarity measures. However, the similarity of their classification performance to that of traditional ortholog detection methods encourages the evaluation of other alignment-free protein pair descriptors in future research.This work was supported by the following financial sources: Postdoc fellowship (SFRH/BPD/92978/2013) granted to GACh by the Portuguese Fundação para a Ciência e a Tecnologia (FCT). AA was supported by the MarInfo – Integrated Platform for Marine Data Acquisition and Analysis (reference NORTE-01-0145-FEDER-000031), a project supported by the North Portugal Regional Operational Program (NORTE 2020), under the PORTUGAL 2020 Partnership Agreement, through the European Regional Development Fund (ERDF)

    Retention and integration of gene duplicates in eukaryotes

    Get PDF

    Genome reconstruction and combinatoric analyses of rearrangement evolution

    Get PDF
    Cancer is often associated with a high number of large-scale, structural rearrangements. In a highly selective environment, some `driver' mutations conferring clonal growth advantage will be positively selected, accounting for further cancer development. Clarifying their nature, as well as their contribution to the pathology is a major current focus of biomedical research. Next generation sequencing technologies can be used nowadays to generate high-resolution data-sets of these alterations in cancer genomes. This project has been developed along two main lines: 1) the reconstruction of cancer aberrant karyotypes, together with their underlying evolutionary history; 2) the elucidation of some combinatorial properties associated with gene duplications. We applied graph theory to the problem of reconstructing the final cancer genome sequence; additionally, we developed an algorithmic approach for the reconstruction of a multi-step evolution consistent with read coverage and paired end data, giving insights on the possible molecular mechanisms underlying rearrangements. Looking at the combinatorics of both tandem and inverted duplication, we developed an algebraic formalism for the representation of these processes. This allowed us to both explore the geometric properties of sequences arising by Tandem Duplication (TD), and obtain a recursion for the number of tandem duplications evolutions after n events. Such results are missing for inverted duplications, whose combinatorial properties have been nevertheless deeply elucidated. Our results have allowed: 1) the identification, through an original approach, of potential rearrangement mechanisms associated with cancer development, and 2) the definition and mathematical description of the complete evolutionary space of specific rearrangement classes
    corecore