15,183 research outputs found

    Riemannian-geometric entropy for measuring network complexity

    Full text link
    A central issue of the science of complex systems is the quantitative characterization of complexity. In the present work we address this issue by resorting to information geometry. Actually we propose a constructive way to associate to a - in principle any - network a differentiable object (a Riemannian manifold) whose volume is used to define an entropy. The effectiveness of the latter to measure networks complexity is successfully proved through its capability of detecting a classical phase transition occurring in both random graphs and scale--free networks, as well as of characterizing small Exponential random graphs, Configuration Models and real networks.Comment: 15 pages, 3 figure

    Resolving structural variability in network models and the brain

    Get PDF
    Large-scale white matter pathways crisscrossing the cortex create a complex pattern of connectivity that underlies human cognitive function. Generative mechanisms for this architecture have been difficult to identify in part because little is known about mechanistic drivers of structured networks. Here we contrast network properties derived from diffusion spectrum imaging data of the human brain with 13 synthetic network models chosen to probe the roles of physical network embedding and temporal network growth. We characterize both the empirical and synthetic networks using familiar diagnostics presented in statistical form, as scatter plots and distributions, to reveal the full range of variability of each measure across scales in the network. We focus on the degree distribution, degree assortativity, hierarchy, topological Rentian scaling, and topological fractal scaling---in addition to several summary statistics, including the mean clustering coefficient, shortest path length, and network diameter. The models are investigated in a progressive, branching sequence, aimed at capturing different elements thought to be important in the brain, and range from simple random and regular networks, to models that incorporate specific growth rules and constraints. We find that synthetic models that constrain the network nodes to be embedded in anatomical brain regions tend to produce distributions that are similar to those extracted from the brain. We also find that network models hardcoded to display one network property do not in general also display a second, suggesting that multiple neurobiological mechanisms might be at play in the development of human brain network architecture. Together, the network models that we develop and employ provide a potentially useful starting point for the statistical inference of brain network structure from neuroimaging data.Comment: 24 pages, 11 figures, 1 table, supplementary material

    Generative models of the human connectome

    Get PDF
    The human connectome represents a network map of the brain's wiring diagram and the pattern into which its connections are organized is thought to play an important role in cognitive function. The generative rules that shape the topology of the human connectome remain incompletely understood. Earlier work in model organisms has suggested that wiring rules based on geometric relationships (distance) can account for many but likely not all topological features. Here we systematically explore a family of generative models of the human connectome that yield synthetic networks designed according to different wiring rules combining geometric and a broad range of topological factors. We find that a combination of geometric constraints with a homophilic attachment mechanism can create synthetic networks that closely match many topological characteristics of individual human connectomes, including features that were not included in the optimization of the generative model itself. We use these models to investigate a lifespan dataset and show that, with age, the model parameters undergo progressive changes, suggesting a rebalancing of the generative factors underlying the connectome across the lifespan.Comment: 38 pages, 5 figures + 19 supplemental figures, 1 tabl

    On Topological Minors in Random Simplicial Complexes

    Full text link
    For random graphs, the containment problem considers the probability that a binomial random graph G(n,p)G(n,p) contains a given graph as a substructure. When asking for the graph as a topological minor, i.e., for a copy of a subdivision of the given graph, it is well-known that the (sharp) threshold is at p=1/np=1/n. We consider a natural analogue of this question for higher-dimensional random complexes Xk(n,p)X^k(n,p), first studied by Cohen, Costa, Farber and Kappeler for k=2k=2. Improving previous results, we show that p=Θ(1/n)p=\Theta(1/\sqrt{n}) is the (coarse) threshold for containing a subdivision of any fixed complete 22-complex. For higher dimensions k>2k>2, we get that p=O(n1/k)p=O(n^{-1/k}) is an upper bound for the threshold probability of containing a subdivision of a fixed kk-dimensional complex.Comment: 15 page
    corecore