866 research outputs found

    A multipath analysis of biswapped networks.

    Get PDF
    Biswapped networks of the form Bsw(G)Bsw(G) have recently been proposed as interconnection networks to be implemented as optical transpose interconnection systems. We provide a systematic construction of κ+1\kappa+1 vertex-disjoint paths joining any two distinct vertices in Bsw(G)Bsw(G), where κ1\kappa\geq 1 is the connectivity of GG. In doing so, we obtain an upper bound of max{2Δ(G)+5,Δκ(G)+Δ(G)+2}\max\{2\Delta(G)+5,\Delta_\kappa(G)+\Delta(G)+2\} on the (κ+1)(\kappa+1)-diameter of Bsw(G)Bsw(G), where Δ(G)\Delta(G) is the diameter of GG and Δκ(G)\Delta_\kappa(G) the κ\kappa-diameter. Suppose that we have a deterministic multipath source routing algorithm in an interconnection network GG that finds κ\kappa mutually vertex-disjoint paths in GG joining any 22 distinct vertices and does this in time polynomial in Δκ(G)\Delta_\kappa(G), Δ(G)\Delta(G) and κ\kappa (and independently of the number of vertices of GG). Our constructions yield an analogous deterministic multipath source routing algorithm in the interconnection network Bsw(G)Bsw(G) that finds κ+1\kappa+1 mutually vertex-disjoint paths joining any 22 distinct vertices in Bsw(G)Bsw(G) so that these paths all have length bounded as above. Moreover, our algorithm has time complexity polynomial in Δκ(G)\Delta_\kappa(G), Δ(G)\Delta(G) and κ\kappa. We also show that if GG is Hamiltonian then Bsw(G)Bsw(G) is Hamiltonian, and that if GG is a Cayley graph then Bsw(G)Bsw(G) is a Cayley graph

    Efficient structural outlooks for vertex product networks

    Get PDF
    In this thesis, a new classification for a large set of interconnection networks, referred to as "Vertex Product Networks" (VPN), is provided and a number of related issues are discussed including the design and evaluation of efficient structural outlooks for algorithm development on this class of networks. The importance of studying the VPN can be attributed to the following two main reasons: first an unlimited number of new networks can be defined under the umbrella of the VPN, and second some known networks can be studied and analysed more deeply. Examples of the VPN include the newly proposed arrangement-star and the existing Optical Transpose Interconnection Systems (OTIS-networks). Over the past two decades many interconnection networks have been proposed in the literature, including the star, hyperstar, hypercube, arrangement, and OTIS-networks. Most existing research on these networks has focused on analysing their topological properties. Consequently, there has been relatively little work devoted to designing efficient parallel algorithms for important parallel applications. In an attempt to fill this gap, this research aims to propose efficient structural outlooks for algorithm development. These structural outlooks are based on grid and pipeline views as popular structures that support a vast body of applications that are encountered in many areas of science and engineering, including matrix computation, divide-and- conquer type of algorithms, sorting, and Fourier transforms. The proposed structural outlooks are applied to the VPN, notably the arrangement-star and OTIS-networks. In this research, we argue that the proposed arrangement-star is a viable candidate as an underlying topology for future high-speed parallel computers. Not only does the arrangement-star bring a solution to the scalability limitations from which the Abstract existing star graph suffers, but it also enables the development of parallel algorithms based on the proposed structural outlooks, such as matrix computation, linear algebra, divide-and-conquer algorithms, sorting, and Fourier transforms. Results from a performance study conducted in this thesis reveal that the proposed arrangement-star supports efficiently applications based on the grid or pipeline structural outlooks. OTIS-networks are another example of the VPN. This type of networks has the important advantage of combining both optical and electronic interconnect technology. A number of studies have recently explored the topological properties of OTIS-networks. Although there has been some work on designing parallel algorithms for image processing and sorting, hardly any work has considered the suitability of these networks for an important class of scientific problems such as matrix computation, sorting, and Fourier transforms. In this study, we present and evaluate two structural outlooks for algorithm development on OTIS-networks. The proposed structural outlooks are general in the sense that no specific factor network or problem domain is assumed. Timing models for measuring the performance of the proposed structural outlooks are provided. Through these models, the performance of various algorithms on OTIS-networks are evaluated and compared with their counterparts on conventional electronic interconnection systems. The obtained results reveal that OTIS-networks are an attractive candidate for future parallel computers due to their superior performance characteristics over networks using traditional electronic interconnects

    Multiswapped networks and their topological and algorithmic properties

    Get PDF
    We generalise the biswapped network Bsw(G)Bsw(G) to obtain a multiswapped network Msw(H;G)Msw(H;G), built around two graphs G and H. We show that the network Msw(H;G)Msw(H;G) lends itself to optoelectronic implementation and examine its topological and algorithmic. We derive the length of a shortest path joining any two vertices in Msw(H;G)Msw(H;G) and consequently a formula for the diameter. We show that if G has connectivity κ⩾1κ⩾1 and H has connectivity λ⩾1λ⩾1 where λ⩽κλ⩽κ then Msw(H;G)Msw(H;G) has connectivity at least κ+λκ+λ, and we derive upper bounds on the (κ+λ)(κ+λ)-diameter of Msw(H;G)Msw(H;G). Our analysis yields distributed routing algorithms for a distributed-memory multiprocessor whose underlying topology is Msw(H;G)Msw(H;G). We also prove that if G and H are Cayley graphs then Msw(H;G)Msw(H;G) need not be a Cayley graph, but when H is a bipartite Cayley graph then Msw(H;G)Msw(H;G) is necessarily a Cayley graph

    Some studies on the multi-mesh architecture.

    Get PDF
    In this thesis, we have reported our investigations on interconnection network architectures based on the idea of a recently proposed multi-processor architecture, Multi-Mesh network. This includes the development of a new interconnection architecture, study of its topological properties and a proposal for implementing Multi-Mesh using optical technology. We have presented a new network topology, called the 3D Multi-Mesh (3D MM) that is an extension of the Multi-Mesh architecture [DDS99]. This network consists of n3 three-dimensional meshes (termed as 3D blocks), each having n3 processors, interconnected in a suitable manner so that the resulting topology is 6-regular with n6 processors and a diameter of only 3n. We have shown that the connectivity of this network is 6. We have explored an algorithm for point-to-point communication on the 3D MM. It is expected that this architecture will enable more efficient algorithm mapping compared to existing architectures. We have also proposed some implementation of the multi-mesh avoiding the electronic bottleneck due to long copper wires for communication between some processors. Our implementation considers a number of realistic scenarios based on hybrid (optical and electronic) communication. One unique feature of this investigation is our use of WDM wavelength routing and the protection scheme. We are not aware of any implementation of interconnection networks using these techniques.Dept. of Computer Science. Paper copy at Leddy Library: Theses & Major Papers - Basement, West Bldg. / Call Number: Thesis2004 .A32. Source: Masters Abstracts International, Volume: 43-03, page: 0868. Adviser: Subir Bandyopadhyay. Thesis (M.Sc.)--University of Windsor (Canada), 2004

    Electronic and magnetic properties of 2D metal-organic networks

    Get PDF
    El invento del microscopio de efecto túnel y el desarrollo de protocolos supramoleculares en superficies han promovido la investigación en el campo de sistemas bidimensionales. Ambos son esenciales para descubrir y estudiar nanoestructuras orgánicas que sean nanodispositivos flexibles debido a sus morfologías modificables. Entre ellos, los ensamblajes metal-orgánicos destacan porque pueden generar enlaces fuertes y reversibles. Estas fuerzas de intensidad intermedias permiten el crecimiento de estructuras ordenadas a largo alcance casi sin defectos. Además, la elección de los componentes y del sustrato puede guiar el crecimiento de redes en geometrías con distintas funcionalidades.Existen estudios teóricos que dicen que las redes metal-orgánicas que contienen subredes de kagome y panal de abeja son aislantes topológicos orgánicos. Esto implica alojar estados de borde topológicamente protegidos, sin embargo, dichos estados nunca han sido observados experimentalmente. Aquí, se presentan 8 redes distintas que consisten en subredes mixtas de kagome y panal de abeja con morfología idéntica variando sus átomos de coordinación y el sustrato que lo soporta. En los capítulos 3 y 4 se presenta un estudio detallado de sus propiedades electrónicas. Se presenta la primera demostración experimental de una banda electrónica en una red metal-orgánica bidimensional, la cual está condicionada por el sustrato que la soporta. En ningún caso aparecieron los estados de borde, ni siquiera en las redes que tienen una interacción mínima con el sustrato. Atribuimos esta ausencia de estados de borde a pequeñas distorsiones estructurales que rompen las simetrías de espejo e inversión.Cuando las redes bidimensionales incorporan átomos de coordinación magnéticos aparecen fenómenos interesantes debido a la baja coordinación del metal y sus estados electrónicos colectivos. En el capítulo 5, el magnetismo de las redes se estudia a través de técnicas de rayos X en instalaciones de sincrotrón. Una de ellas, Fe+DCA/Au(111), es la primera red bidimensional metal-orgánica ferromagnética y que se comporta como el modelo de Ising.Finalmente, en el capítulo 6 se prueba la capacidad de estas redes como plantilla para el crecimiento nanoestructurado de metales 3d y 4f. La periodicidad y tamaño de estas estructuras se puede controlar en cierta manera por una adecuada elección de los métodos de preparación.<br /

    On (2,2)-Domination in Hexagonal Mesh Pyramid

    Get PDF
    Network topology plays a key role in designing an interconnection network. Various topologies for interconnection networks have been proposed in the literature of which pyramid network is extensively used as a base for both software data structure and hardware design. The pyramid networks can efficiently handle the communication requirements of various problems in graph theory due to its inherent hierarchy at each level. Domination problems are one of the classical types of problems in graph theory with vast application in computer networks and distributed computing. In this paper, we obtain the bounds for a variant of the domination problem namely (2,2)-domination for a pyramid network called Hexagonal mesh pyramid

    A Note on Distance-Based Entropy of Dendrimers

    Get PDF
    This paper introduces a variant of entropy measures based on vertex eccentricity and applies it to all graphs representing the isomers of octane. Taking into account the vertex degree as well (degree-ecc-entropy), we find a good correlation with the acentric factor of octane isomers. In particular, we compute the degree-ecc-entropy for three classes of dendrimer graphs

    Stable Bosonic Topological Edge Modes in the Presence of Many-Body Interactions

    Full text link
    Many magnetic materials are predicted to exhibit bosonic topological edge modes in their excitation spectra, because of the nontrivial topology of their magnon, triplon or other quasi-particle band structures. However, there is a discrepancy between theory prediction and experimental observation, which suggests some underlying mechanism that intrinsically suppresses the expected experimental signatures, like the thermal Hall current. Many-body interactions that are not accounted for in the non-interacting quasi-particle picture are most often identified as the reason for the absence of the topological edge modes. Here we report stable bosonic edge modes at the boundaries of a ladder quantum paramagnet with gapped triplon excitations in the presence of the full many-body interaction. For the first time, we use tensor network methods to resolve topological edge modes in the time-dependent spin-spin correlations and the dynamical structure factor, which is directly accessible experimentally. We further show that these edge modes have anomalously long time coherence, discuss the topological phase diagram of the model, demonstrate the fractionalization of its low-lying excitations, and propose potential material candidates
    corecore