530 research outputs found

    Lattices and Their Continuum Limits

    Get PDF
    We address the problem of the continuum limit for a system of Hausdorff lattices (namely lattices of isolated points) approximating a topological space MM. The correct framework is that of projective systems. The projective limit is a universal space from which MM can be recovered as a quotient. We dualize the construction to approximate the algebra C(M){\cal C}(M) of continuous functions on MM. In a companion paper we shall extend this analysis to systems of noncommutative lattices (non Hausdorff lattices).Comment: 11 pages, 1 Figure included in the LaTeX Source New version, minor modifications (typos corrected) and a correction in the list of author

    Discrete-Euclidean operations

    Get PDF
    International audienceIn this paper we study the relationship between the Euclidean and the discrete space. We study discrete operations based on Euclidean functions: the discrete smooth scaling and the discrete-continuous rotation. Conversely, we study Euclidean oper- ations based on discrete functions: the discrete based simplification, the Euclidean- discrete union and the Euclidean-discrete co-refinement. These operations operate partly in the discrete and partly in the continuous space. Especially for the discrete smooth scaling operation, we provide error bounds when different such operations are chained

    Distances on a Lattice from Non-commutative Geometry

    Full text link
    Using the tools of noncommutative geometry we calculate the distances between the points of a lattice on which the usual discretized Dirac operator has been defined. We find that these distances do not have the expected behaviour, revealing that from the metric point of view the lattice does not look at all as a set of points sitting on the continuum manifold. We thus have an additional criterion for the choice of the discretization of the Dirac operator.Comment: 14 page

    Spatial discretizations of generic dynamical systems

    Full text link
    How is it possible to read the dynamical properties (ie when the time goes to infinity) of a system on numerical simulations? To try to answer this question, we study in this manuscript a model reflecting what happens when the orbits of a discrete time system ff (for example an homeomorphism) are computed numerically . The computer working in finite numerical precision, it will replace ff by a spacial discretization of ff, denoted by fNf_N (where the order NN of discretization stands for the numerical accuracy). In particular, we will be interested in the dynamical behaviour of the finite maps fNf_N for a generic system ff and NN going to infinity, where generic will be taken in the sense of Baire (mainly among sets of homeomorphisms or C1C^1-diffeomorphisms). The first part of this manuscript is devoted to the study of the dynamics of the discretizations fNf_N, when ff is a generic conservative/dissipative homeomorphism of a compact manifold. We show that it would be mistaken to try to recover the dynamics of ff from that of a single discretization fNf_N : its dynamics strongly depends on the order NN. To detect some dynamical features of ff, we have to consider all the discretizations fNf_N when NN goes through N\mathbf N. The second part deals with the linear case, which plays an important role in the study of C1C^1-generic diffeomorphisms, discussed in the third part of this manuscript. Under these assumptions, we obtain results similar to those established in the first part, though weaker and harder to prove.Comment: 322 pages. This is an improved version of the thesis of the author (among others, the introduction and conclusion have been translated into English). In particular, it contains works already published on arXiv. Comments welcome

    A non-perturbative Lorentzian path integral for gravity

    Full text link
    A well-defined regularized path integral for Lorentzian quantum gravity in three and four dimensions is constructed, given in terms of a sum over dynamically triangulated causal space-times. Each Lorentzian geometry and its associated action have a unique Wick rotation to the Euclidean sector. All space-time histories possess a distinguished notion of a discrete proper time. For finite lattice volume, the associated transfer matrix is self-adjoint and bounded. The reflection positivity of the model ensures the existence of a well-defined Hamiltonian. The degenerate geometric phases found previously in dynamically triangulated Euclidean gravity are not present. The phase structure of the new Lorentzian quantum gravity model can be readily investigated by both analytic and numerical methods.Comment: 11 pages, LaTeX, improved discussion of reflection positivity, conclusions unchanged, references update

    From the coarse geometry of warped cones to the measured coupling of groups

    Full text link
    In this article, we prove that if two warped cones corresponding to two groups with free, isometric, measure-preserving, ergodic actions on two manifolds are quasi-isometric, then the corresponding groups are uniformly measured equivalent (UME). It was earlier known from the work of de Laat-Vigolo that if two warped cones are QI, then their stable products are QI. Our result strengthens this result and go further to prove UME of the groups. However, Fisher-Nguyen-Limbeek proves that if the warped cones corresponding to two finitely presented groups with no free abelian factors are QI, then there is an affine commensuration of the two actions. Our result can be seen as an extension of their result in the setting of infinite presentability under some extra assumptions.Comment: Comments welcome. arXiv admin note: text overlap with arXiv:1512.08828. Some typos have been corrected and some minor gaps of Proposition 4.2 have been filled u
    corecore