2,980 research outputs found

    Topological mappings of video and audio data

    Get PDF
    We review a new form of self-organizing map which is based on a nonlinear projection of latent points into data space, identical to that performed in the Generative Topographic Mapping (GTM).1 But whereas the GTM is an extension of a mixture of experts, this model is an extension of a product of experts.2 We show visualisation and clustering results on a data set composed of video data of lips uttering 5 Korean vowels. Finally we note that we may dispense with the probabilistic underpinnings of the product of experts and derive the same algorithm as a minimisation of mean squared error between the prototypes and the data. This leads us to suggest a new algorithm which incorporates local and global information in the clustering. Both ot the new algorithms achieve better results than the standard Self-Organizing Map

    Multi-view Learning as a Nonparametric Nonlinear Inter-Battery Factor Analysis

    Get PDF
    Factor analysis aims to determine latent factors, or traits, which summarize a given data set. Inter-battery factor analysis extends this notion to multiple views of the data. In this paper we show how a nonlinear, nonparametric version of these models can be recovered through the Gaussian process latent variable model. This gives us a flexible formalism for multi-view learning where the latent variables can be used both for exploratory purposes and for learning representations that enable efficient inference for ambiguous estimation tasks. Learning is performed in a Bayesian manner through the formulation of a variational compression scheme which gives a rigorous lower bound on the log likelihood. Our Bayesian framework provides strong regularization during training, allowing the structure of the latent space to be determined efficiently and automatically. We demonstrate this by producing the first (to our knowledge) published results of learning from dozens of views, even when data is scarce. We further show experimental results on several different types of multi-view data sets and for different kinds of tasks, including exploratory data analysis, generation, ambiguity modelling through latent priors and classification.Comment: 49 pages including appendi

    Introduction to Gestural Similarity in Music. An Application of Category Theory to the Orchestra

    Full text link
    Mathematics, and more generally computational sciences, intervene in several aspects of music. Mathematics describes the acoustics of the sounds giving formal tools to physics, and the matter of music itself in terms of compositional structures and strategies. Mathematics can also be applied to the entire making of music, from the score to the performance, connecting compositional structures to acoustical reality of sounds. Moreover, the precise concept of gesture has a decisive role in understanding musical performance. In this paper, we apply some concepts of category theory to compare gestures of orchestral musicians, and to investigate the relationship between orchestra and conductor, as well as between listeners and conductor/orchestra. To this aim, we will introduce the concept of gestural similarity. The mathematical tools used can be applied to gesture classification, and to interdisciplinary comparisons between music and visual arts.Comment: The final version of this paper has been published by the Journal of Mathematics and Musi

    Tangible user interfaces : past, present and future directions

    Get PDF
    In the last two decades, Tangible User Interfaces (TUIs) have emerged as a new interface type that interlinks the digital and physical worlds. Drawing upon users' knowledge and skills of interaction with the real non-digital world, TUIs show a potential to enhance the way in which people interact with and leverage digital information. However, TUI research is still in its infancy and extensive research is required in or- der to fully understand the implications of tangible user interfaces, to develop technologies that further bridge the digital and the physical, and to guide TUI design with empirical knowledge. This paper examines the existing body of work on Tangible User In- terfaces. We start by sketching the history of tangible user interfaces, examining the intellectual origins of this field. We then present TUIs in a broader context, survey application domains, and review frame- works and taxonomies. We also discuss conceptual foundations of TUIs including perspectives from cognitive sciences, phycology, and philoso- phy. Methods and technologies for designing, building, and evaluating TUIs are also addressed. Finally, we discuss the strengths and limita- tions of TUIs and chart directions for future research

    The spatiotemporal representation of dance and music gestures using topological gesture analysis (TGA)

    Get PDF
    SPATIOTEMPORAL GESTURES IN MUSIC AND DANCE HAVE been approached using both qualitative and quantitative research methods. Applying quantitative methods has offered new perspectives but imposed several constraints such as artificial metric systems, weak links with qualitative information, and incomplete accounts of variability. In this study, we tackle these problems using concepts from topology to analyze gestural relationships in space. The Topological Gesture Analysis (TGA) relies on the projection of musical cues onto gesture trajectories, which generates point clouds in a three-dimensional space. Point clouds can be interpreted as topologies equipped with musical qualities, which gives us an idea about the relationships between gesture, space, and music. Using this method, we investigate the relationships between musical meter, dance style, and expertise in two popular dances (samba and Charleston). The results show how musical meter is encoded in the dancer's space and how relevant information about styles and expertise can be revealed by means of simple topological relationships

    Learning to Transform Time Series with a Few Examples

    Get PDF
    We describe a semi-supervised regression algorithm that learns to transform one time series into another time series given examples of the transformation. This algorithm is applied to tracking, where a time series of observations from sensors is transformed to a time series describing the pose of a target. Instead of defining and implementing such transformations for each tracking task separately, our algorithm learns a memoryless transformation of time series from a few example input-output mappings. The algorithm searches for a smooth function that fits the training examples and, when applied to the input time series, produces a time series that evolves according to assumed dynamics. The learning procedure is fast and lends itself to a closed-form solution. It is closely related to nonlinear system identification and manifold learning techniques. We demonstrate our algorithm on the tasks of tracking RFID tags from signal strength measurements, recovering the pose of rigid objects, deformable bodies, and articulated bodies from video sequences. For these tasks, this algorithm requires significantly fewer examples compared to fully-supervised regression algorithms or semi-supervised learning algorithms that do not take the dynamics of the output time series into account

    The audio game laboratory: Building maps from games

    Get PDF
    Audio games demonstrate an emergence of interactive parameter mapping sonifications that potentially optimally display geographical information and a large number of simultaneous data variables. Our preliminary investigation of audio games is in response to a call for more research on parameter mapping sonifications, such as the best way of presenting auditory legends for representations, effectiveness of spatial audio, map comprehension techniques, and finding optimal sonic variable mappings. We also present a proposed set of auditory map interfaces observed in audio games. Commercially available interactive interfaces and audio games – that have been shaped and informally “tested” by the selection pressures of a demanding consumer market – can serve as examples of potentially effective conventions informing future work in the auditory display research community
    corecore