3,464 research outputs found

    An Overview of the Use of Neural Networks for Data Mining Tasks

    Get PDF
    In the recent years the area of data mining has experienced a considerable demand for technologies that extract knowledge from large and complex data sources. There is a substantial commercial interest as well as research investigations in the area that aim to develop new and improved approaches for extracting information, relationships, and patterns from datasets. Artificial Neural Networks (NN) are popular biologically inspired intelligent methodologies, whose classification, prediction and pattern recognition capabilities have been utilised successfully in many areas, including science, engineering, medicine, business, banking, telecommunication, and many other fields. This paper highlights from a data mining perspective the implementation of NN, using supervised and unsupervised learning, for pattern recognition, classification, prediction and cluster analysis, and focuses the discussion on their usage in bioinformatics and financial data analysis tasks

    Stretching Single Domain Proteins: Phase Diagram and Kinetics of Force-Induced Unfolding

    Full text link
    Single molecule force spectroscopy reveals unfolding of domains in titin upon stretching. We provide a theoretical framework for these experiments by computing the phase diagrams for force-induced unfolding of single domain proteins using lattice models. The results show that two-state folders (at zero force) unravel cooperatively whereas stretching of non-two-state folders occurs through intermediates. The stretching rates of individual molecules show great variations reflecting the heterogeneity of force-induced unfolding pathways. The approach to the stretched state occurs in a step-wise "quantized" manner. Unfolding dynamics depends sensitively on topology. The unfolding rates increase exponentially with force f till an optimum value which is determined by the barrier to unfolding when f=0. A mapping of these results to proteins shows qualitative agreement with force-induced unfolding of Ig-like domains in titin. We show that single molecule force spectroscopy can be used to map the folding free energy landscape of proteins in the absence of denaturants.Comment: 12 pages, Latex, 6 ps figure

    Statistics Character and Complexity in Nonlinear Systems

    Get PDF
    corecore