1,285 research outputs found

    Name Disambiguation from link data in a collaboration graph using temporal and topological features

    Get PDF
    In a social community, multiple persons may share the same name, phone number or some other identifying attributes. This, along with other phenomena, such as name abbreviation, name misspelling, and human error leads to erroneous aggregation of records of multiple persons under a single reference. Such mistakes affect the performance of document retrieval, web search, database integration, and more importantly, improper attribution of credit (or blame). The task of entity disambiguation partitions the records belonging to multiple persons with the objective that each decomposed partition is composed of records of a unique person. Existing solutions to this task use either biographical attributes, or auxiliary features that are collected from external sources, such as Wikipedia. However, for many scenarios, such auxiliary features are not available, or they are costly to obtain. Besides, the attempt of collecting biographical or external data sustains the risk of privacy violation. In this work, we propose a method for solving entity disambiguation task from link information obtained from a collaboration network. Our method is non-intrusive of privacy as it uses only the time-stamped graph topology of an anonymized network. Experimental results on two real-life academic collaboration networks show that the proposed method has satisfactory performance.Comment: The short version of this paper has been accepted to ASONAM 201

    Bayesian Non-Exhaustive Classification A Case Study: Online Name Disambiguation using Temporal Record Streams

    Get PDF
    The name entity disambiguation task aims to partition the records of multiple real-life persons so that each partition contains records pertaining to a unique person. Most of the existing solutions for this task operate in a batch mode, where all records to be disambiguated are initially available to the algorithm. However, more realistic settings require that the name disambiguation task be performed in an online fashion, in addition to, being able to identify records of new ambiguous entities having no preexisting records. In this work, we propose a Bayesian non-exhaustive classification framework for solving online name disambiguation task. Our proposed method uses a Dirichlet process prior with a Normal * Normal * Inverse Wishart data model which enables identification of new ambiguous entities who have no records in the training data. For online classification, we use one sweep Gibbs sampler which is very efficient and effective. As a case study we consider bibliographic data in a temporal stream format and disambiguate authors by partitioning their papers into homogeneous groups. Our experimental results demonstrate that the proposed method is better than existing methods for performing online name disambiguation task.Comment: to appear in CIKM 201

    Recent developments in linguistic annotations of the TĂŒBa-D/Z treebank

    Get PDF
    The purpose of this paper is to describe recent developments in the morphological, syntactic, and semantic annotation of the TĂŒBa-D/Z treebank of German. The TĂŒBa-D/Z annotation scheme is derived from the Verbmobil treebank of spoken German [4, 10], but has been extended along various dimensions to accommodate the characteristics of written texts. TĂŒBa-D/Z uses as its data source the "die tageszeitung" (taz) newspaper corpus. The Verbmobil treebank annotation scheme distinguishes four levels of syntactic constituency: the lexical level, the phrasal level, the level of topological fields, and the clausal level. The primary ordering principle of a clause is the inventory of topological fields, which characterize the word order regularities among different clause types of German, and which are widely accepted among descriptive linguists of German [3, 6]. The TĂŒBa-D/Z annotation relies on a context-free backbone (i.e. proper trees without crossing branches) of phrase structure combined with edge labels that specify the grammatical function of the phrase in question. The syntactic annotation scheme of the TĂŒBa-D/Z is described in more detail in [12, 11]. TĂŒBa-D/Z currently comprises approximately 15 000 sentences, with approximately 7 000 sentences being in the correction phase. The latter will be released along with an updated version of the existing treebank before the end of this year. The treebank is available in an XML format, in the NEGRA export format [1] and in the Penn treebank bracketing format. The XML format contains all types of information as described above, the NEGRA export format contains all sentenceinternal information while the Penn treebank format includes only those layers of information that can be expressed as pure tree structures. Over the course of the last year, more fine grained linguistic annotations have been added along the following dimensions: 1. the basic Stuttgart-TĂŒbingen tagset, STTS, [9] labels have been enriched by relevant features of inflectional morphology, 2. named entity information has been encoded as part of the syntactic annotation, and 3. a set of anaphoric and coreference relations has been added to link referentially dependent noun phrases. In the following sections, we will describe each of these innovations in turn and will demonstrate how the additional annotations can be incorporated into one comprehensive annotation scheme

    Large scale homophily analysis in twitter using a twixonomy

    Get PDF
    In this paper we perform a large-scale homophily analysis on Twitter using a hierarchical representation of users' interests which we call a Twixonomy. In order to build a population, community, or single-user Twixonomy we first associate "topical" friends in users' friendship lists (i.e. friends representing an interest rather than a social relation between peers) with Wikipedia categories. A wordsense disambiguation algorithm is used to select the appropriate wikipage for each topical friend. Starting from the set of wikipages representing "primitive" interests, we extract all paths connecting these pages with topmost Wikipedia category nodes, and we then prune the resulting graph G efficiently so as to induce a direct acyclic graph. This graph is the Twixonomy. Then, to analyze homophily, we compare different methods to detect communities in a peer friends Twitter network, and then for each community we compute the degree of homophily on the basis of a measure of pairwise semantic similarity. We show that the Twixonomy provides a means for describing users' interests in a compact and readable way and allows for a fine-grained homophily analysis. Furthermore, we show that midlow level categories in the Twixonomy represent the best balance between informativeness and compactness of the representation

    Named Entity Extraction and Disambiguation: The Reinforcement Effect.

    Get PDF
    Named entity extraction and disambiguation have received much attention in recent years. Typical fields addressing these topics are information retrieval, natural language processing, and semantic web. Although these topics are highly dependent, almost no existing works examine this dependency. It is the aim of this paper to examine the dependency and show how one affects the other, and vice versa. We conducted experiments with a set of descriptions of holiday homes with the aim to extract and disambiguate toponyms as a representative example of named entities. We experimented with three approaches for disambiguation with the purpose to infer the country of the holiday home. We examined how the effectiveness of extraction influences the effectiveness of disambiguation, and reciprocally, how filtering out ambiguous names (an activity that depends on the disambiguation process) improves the effectiveness of extraction. Since this, in turn, may improve the effectiveness of disambiguation again, it shows that extraction and disambiguation may reinforce each other.\u

    Neogeography: The Challenge of Channelling Large and Ill-Behaved Data Streams

    Get PDF
    Neogeography is the combination of user generated data and experiences with mapping technologies. In this article we present a research project to extract valuable structured information with a geographic component from unstructured user generated text in wikis, forums, or SMSes. The extracted information should be integrated together to form a collective knowledge about certain domain. This structured information can be used further to help users from the same domain who want to get information using simple question answering system. The project intends to help workers communities in developing countries to share their knowledge, providing a simple and cheap way to contribute and get benefit using the available communication technology
    • 

    corecore