67 research outputs found

    Topologic proofs of some combinatorial theorems

    Get PDF
    AbstractDuring the last 50 years several combinatorial theorems have been proved which have provided elegant proofs of a number of fundamental results in topology. These include Sperner's Lemma, Tucker's Lemma, and Kuhn's Cubical Sperner Lemma, which have been applied to the Brouwer Fixed Point Theorem, as well as a number of results involving antipodal properties of continuous mappings.In this paper the reverse process is used to find topologic proofs of several combinatorial results. In response to several questions raised by Kuhn, a proof of Sperner's Lemma from the Brouwer Fixed Point Theorem is given, as is a proof of Tucker's Lemma from a topologic non-existence theorem for certain continuous mappings of an n-ball to its boundary. In the final section, a new labeling theorem for the n-cube, which is equivalent to Tucker's Lemma, is presented, and is proved by using topologic methods

    Clusters of Cycles

    Full text link
    A {\it cluster of cycles} (or {\it (r,q)(r,q)-polycycle}) is a simple planar 2--co nnected finite or countable graph GG of girth rr and maximal vertex-degree qq, which admits {\it (r,q)(r,q)-polycyclic realization} on the plane, denote it by P(G)P(G), i.e. such that: (i) all interior vertices are of degree qq, (ii) all interior faces (denote their number by prp_r) are combinatorial rr-gons and (implied by (i), (ii)) (iii) all vertices, edges and interior faces form a cell-complex. An example of (r,q)(r,q)-polycycle is the skeleton of (rq)(r^q), i.e. of the qq-valent partition of the sphere S2S^2, Euclidean plane R2R^2 or hyperbolic plane H2H^2 by regular rr-gons. Call {\it spheric} pairs (r,q)=(3,3),(3,4),(4,3),(3,5),(5,3)(r,q)=(3,3),(3,4),(4,3),(3,5),(5,3); for those five pairs P(rq)P(r^q) is (rq)(r^q) without the exterior face; otherwise P(rq)=(rq)P(r^q)=(r^q). We give here a compact survey of results on (r,q)(r,q)-polycycles.Comment: 21. to in appear in Journal of Geometry and Physic

    Polynomials with symmetric zeros

    Get PDF
    Polynomials whose zeros are symmetric either to the real line or to the unit circle are very important in mathematics and physics. We can classify them into three main classes: the self-conjugate polynomials, whose zeros are symmetric to the real line; the self-inversive polynomials, whose zeros are symmetric to the unit circle; and the self-reciprocal polynomials, whose zeros are symmetric by an inversion with respect to the unit circle followed by a reflection in the real line. Real self-reciprocal polynomials are simultaneously self-conjugate and self-inversive so that their zeros are symmetric to both the real line and the unit circle. In this survey, we present a short review of these polynomials, focusing on the distribution of their zeros.Comment: Keywords: Self-inversive polynomials, self-reciprocal polynomials, Pisot and Salem polynomials, M\"obius transformations, knot theory, Bethe equation

    Robustness and Randomness

    Get PDF
    Robustness problems of computational geometry algorithms is a topic that has been subject to intensive research efforts from both computer science and mathematics communities. Robustness problems are caused by the lack of precision in computations involving floating-point instead of real numbers. This paper reviews methods dealing with robustness and inaccuracy problems. It discussed approaches based on exact arithmetic, interval arithmetic and probabilistic methods. The paper investigates the possibility to use randomness at certain levels of reasoning to make geometric constructions more robust

    Statistical properties of unimodal maps: smooth families with negative Schwarzian derivative

    Get PDF
    We prove that there is a residual set of families of smooth or analytic unimodal maps with quadratic critical point and negative Schwarzian derivative such that almost every non-regular parameter is Collet-Eckmann with subexponential recurrence of the critical orbit. Those conditions lead to a detailed and robust statistical description of the dynamics. This proves the Palis conjecture in this setting.Comment: 33 pages, no figures, third version, to appear in Ast\'erisqu

    Inductive Pattern Formation

    Get PDF
    With the extended computational limits of algorithmic recursion, scientific investigation is transitioning away from computationally decidable problems and beginning to address computationally undecidable complexity. The analysis of deductive inference in structure-property models are yielding to the synthesis of inductive inference in process-structure simulations. Process-structure modeling has examined external order parameters of inductive pattern formation, but investigation of the internal order parameters of self-organization have been hampered by the lack of a mathematical formalism with the ability to quantitatively define a specific configuration of points. This investigation addressed this issue of quantitative synthesis. Local space was developed by the Poincare inflation of a set of points to construct neighborhood intersections, defining topological distance and introducing situated Boolean topology as a local replacement for point-set topology. Parallel development of the local semi-metric topological space, the local semi-metric probability space, and the local metric space of a set of points provides a triangulation of connectivity measures to define the quantitative architectural identity of a configuration and structure independent axes of a structural configuration space. The recursive sequence of intersections constructs a probabilistic discrete spacetime model of interacting fields to define the internal order parameters of self-organization, with order parameters external to the configuration modeled by adjusting the morphological parameters of individual neighborhoods and the interplay of excitatory and inhibitory point sets. The evolutionary trajectory of a configuration maps the development of specific hierarchical structure that is emergent from a specific set of initial conditions, with nested boundaries signaling the nonlinear properties of local causative configurations. This exploration of architectural configuration space concluded with initial process-structure-property models of deductive and inductive inference spaces. In the computationally undecidable problem of human niche construction, an adaptive-inductive pattern formation model with predictive control organized the bipartite recursion between an information structure and its physical expression as hierarchical ensembles of artificial neural network-like structures. The union of architectural identity and bipartite recursion generates a predictive structural model of an evolutionary design process, offering an alternative to the limitations of cognitive descriptive modeling. The low computational complexity of these models enable them to be embedded in physical constructions to create the artificial life forms of a real-time autonomously adaptive human habitat

    Lecture notes: Semidefinite programs and harmonic analysis

    Full text link
    Lecture notes for the tutorial at the workshop HPOPT 2008 - 10th International Workshop on High Performance Optimization Techniques (Algebraic Structure in Semidefinite Programming), June 11th to 13th, 2008, Tilburg University, The Netherlands.Comment: 31 page
    • …
    corecore