1,392 research outputs found

    Advanced optical microscopies for materials: new trends

    Get PDF
    Podeu consultar el llibre complet a: http://hdl.handle.net/2445/32166This article summarizes the new trends of Optical Microscopy applied to Materials, with examples of applications that illustrate the capabilities of the technique

    Satellite SAR Interferometry for Earth’s Crust Deformation Monitoring and Geological Phenomena Analysis

    Get PDF
    Synthetic aperture radar interferometry (InSAR) and the related processing techniques provide a unique tool for the quantitative measurement of the Earth’s surface deformation associated with certain geophysical processes (such as volcanic eruptions, landslides and earthquakes), thus making possible long-term monitoring of surface deformation and analysis of relevant geodynamic phenomena. This chapter provides an application-oriented perspective on the spaceborne InSAR technology with emphasis on subsequent geophysical investigations. First, the fundamentals of radar interferometry and differential interferometry, as well as error sources, are briefly introduced. Emphasis is then placed on the realistic simulation of the underlying geophysics processes, thus offering an unfolded perspective on both analytical and numerical approaches for modeling deformation sources. Finally, various experimental investigations conducted by acquiring SAR multitemporal observations on areas subject to deformation processes of particular geological interest are presented and discussed

    Parameters affecting interferometric coherence and implications for long-term operational monitoring of mining-induced surface deformation

    Get PDF
    Includes abstract.Includes bibliographical references.Surface deformation due to underground mining poses risks to health and safety as well as infrastructure and the environment. Consequently, the need for long-term operational monitoring systems exists. Traditional field-based measurements are point-based meaning that the full extent of deforming areas is poorly understood. Field-based techniques are also labour intensive if large areas are to be monitored on a regular basis. To overcome these limitations, this investigation considered traditional and advanced differential radar interferometry techniques for their ability to monitor large areas over time, remotely. An area known to be experiencing mining induced surface deformation was used as test case. The agricultural nature of the area implied that signal decorrelation effects were expected. Consequently, four sources of data, captured at three wavelengths by earth-orbiting satellites were obtained. This provided the opportunity to investigate different phase decorrelation effects on data from standard imaging platforms using real-world deformation phenomenon as test-case. The data were processed using standard dInSAR and polInSAR techniques. The deformation measurement results together with an analysis of parameters most detrimental to long-term monitoring were presented. The results revealed that, contrary to the hypothesis, polInSAR techniques did not provide an enhanced ability to monitor surface deformation compared to dInSAR techniques. Although significant improvements in coherence values were obtained, the spatial heterogeneity of phase measurements could not be improved. Consequently, polInSAR could not overcome ecorrelation associated with vegetation cover and evolving land surfaces. However, polarimetric information could be used to assess the scattering behaviour of the surface, thereby guiding the definition of optimal sensor configuration for long-term monitoring. Despite temporal and geometric decorrelation, the results presented demonstrated that mining-induced deformation could be measured and monitored using dInSAR techniques. Large areas could be monitored remotely and the areal extent of deforming areas could be assessed, effectively overcoming the limitations of field-based techniques. Consequently, guidelines for the optimal sensor configuration and image acquisition strategy for long-term operational monitoring of mining-induced surface deformation were provided

    Improvement of the Accuracy of InSAR Image Co-Registration Based On Tie Points – A Review

    Get PDF
    Interferometric Synthetic Aperture Radar (InSAR) is a new measurement technology, making use of the phase information contained in the Synthetic Aperture Radar (SAR) images. InSAR has been recognized as a potential tool for the generation of digital elevation models (DEMs) and the measurement of ground surface deformations. However, many critical factors affect the quality of InSAR data and limit its applications. One of the factors is InSAR data processing, which consists of image co-registration, interferogram generation, phase unwrapping and geocoding. The co-registration of InSAR images is the first step and dramatically influences the accuracy of InSAR products. In this paper, the principle and processing procedures of InSAR techniques are reviewed. One of important factors, tie points, to be considered in the improvement of the accuracy of InSAR image co-registration are emphatically reviewed, such as interval of tie points, extraction of feature points, window size for tie point matching and the measurement for the quality of an interferogram
    • …
    corecore