142 research outputs found

    Multispectral Resource Sampler: Proof of concept. Literature survey of bidirectional reflectance

    Get PDF
    A bibliography compiled in order to give a comprehensive review of previous work in scene bidirectional reflectance, particularly those studies relevant to the Multispectral Resource Sampler (MRS) is presented. The bibliography contains 124 abstracts. In addition a synthesis of the literature results is given along with background information concerning MRS

    Remote sensing of leaf area index : enhanced retrieval from close-range and remotely sensed optical observations

    Get PDF
    A wide range of models used in agriculture, ecology, carbon cycling, climate and other related studies require information on the amount of leaf material present in a given environment to correctly represent radiation, heat, momentum, water, and various gas exchanges with the overlying atmosphere or the underlying soil. Leaf area index (LAI) thus often features as a critical land surface variable in parameterisations of global and regional climate models, e.g., radiation uptake, precipitation interception, energy conversion, gas exchange and momentum, as all areas are substantially determined by the vegetation surface. Optical wavelengths of remote sensing are the common electromagnetic regions used for LAI estimations and generally for vegetation studies. The main purpose of this dissertation was to enhance the determination of LAI using close-range remote sensing (hemispherical photography), airborne remote sensing (high resolution colour and colour infrared imagery), and satellite remote sensing (high resolution SPOT 5 HRG imagery) optical observations. The commonly used light extinction models are applied at all levels of optical observations. For the sake of comparative analysis, LAI was further determined using statistical relationships between spectral vegetation index (SVI) and ground based LAI. The study areas of this dissertation focus on two regions, one located in Taita Hills, South-East Kenya characterised by tropical cloud forest and exotic plantations, and the other in Gatineau Park, Southern Quebec, Canada dominated by temperate hardwood forest. The sampling procedure of sky map of gap fraction and size from hemispherical photographs was proven to be one of the most crucial steps in the accurate determination of LAI. LAI and clumping index estimates were significantly affected by the variation of the size of sky segments for given zenith angle ranges. On sloping ground, gap fraction and size distributions present strong upslope/downslope asymmetry of foliage elements, and thus the correction and the sensitivity analysis for both LAI and clumping index computations were demonstrated. Several SVIs can be used for LAI mapping using empirical regression analysis provided that the sensitivities of SVIs at varying ranges of LAI are large enough. Large scale LAI inversion algorithms were demonstrated and were proven to be a considerably efficient alternative approach for LAI mapping. LAI can be estimated nonparametrically from the information contained solely in the remotely sensed dataset given that the upper-end (saturated SVI) value is accurately determined. However, further study is still required to devise a methodology as well as instrumentation to retrieve on-ground green leaf area index . Subsequently, the large scale LAI inversion algorithms presented in this work can be precisely validated. Finally, based on literature review and this dissertation, potential future research prospects and directions were recommended.Ei saatavill

    Global retrieval of bidirectional reflectance and albedo over land from EOS MODIS and MISR data: Theory and algorithm

    Get PDF
    This paper describes the theory and the algorithm to be used in producing a global bidirectional reflectance distribution function (BRDF) and albedo product from data to be acquired by the moderate resolution imaging spectroradiometer (MODIS) and the multiangle imaging spectroradiometer (MISR), both to be launched in 1998 on the AM-I satellite platform as part of NASA's Earth Observing System (EOS). The product will be derived using the kernel-driven semiempirical Ambrals BRDF model, utilizing five variants of kernel functions characterizing isotropic, volume and surface scattering. The BRDF and the albedo of each pixel of the land surface will be modeled at a spatial resolution of I km and once every 16 days in seven spectral bands spanning the visible and the near infrared. The BRDF parameters retrieved and recorded in the MODIS BRDF/albedo product will be intrinsic surface properties decoupled from the prevailing atmospheric state and hence suited for a wide range of applications requiring characterization of the directional anisotropy of Earth surface reflectance. A set of quality control flags accompanies the product. An initial validation of the Ambrals model is demonstrated using a variety of field-measured data sets for several different land cover types

    Effects of atmospheric, topographic, and BRDF correction on imaging spectroscopy-derived data products

    Full text link
    Surface reflectance is an important data product in imaging spectroscopy for obtaining surface information. The complex retrieval of surface reflectance, however, critically relies on accurate knowledge of atmospheric absorption and scattering, and the compensation of these effects. Furthermore, illumination and observation geometry in combination with surface reflectance anisotropy determine dynamics in retrieved surface reflectance not related to surface absorption properties. To the best of authors’ knowledge, no comprehensive assessment of the impact of atmospheric, topographic, and anisotropy effects on derived surface information is available so far.This study systematically evaluates the impact of these effects on reflectance, albedo, and vegetation products. Using three well-established processing schemes (ATCOR F., ATCOR R., and BREFCOR), high-resolution APEX imaging spectroscopy data, covering a large gradient of illumination and observation angles, are brought to several processing states, varyingly affected by mentioned effects. Pixel-wise differences of surface reflectance, albedo, and spectral indices of neighboring flight lines are quantitatively analyzed in their respective overlapping area. We found that compensation of atmospheric effects reveals actual anisotropy-related dynamics in surface reflectance and derived albedo, related to an increase in pixel-wise relative reflectance and albedo differences of more than 40%. Subsequent anisotropy compensation allows us to successfully reduce apparent relative reflectance and albedo differences by up to 20%. In contrast, spectral indices are less affected by atmospheric and anisotropy effects, showing relative differences of 3% to 10% in overlapping regions of flight lines.We recommend to base decisions on the use of appropriate processing schemes on individual use cases considering envisioned data products

    Retrieving leaf area index from multi-angular airborne data

    Get PDF
    This work is aimed to demonstrate the feasibility of a methodology for retrieving bio-geophysical variables whilst at the same time fully accounting for additional information on directional anisotropy. A model-based approach has been developed to deconvolve the angular reflectance into single landcovers reflectances, attempting to solve the inconsistencies of 1D models and linear mixture approaches. The model combines the geometric optics of large scale canopy structure with principles of radiative transfer for volume scattering within individual crowns. The reliability of the model approach to retrieve LAI has been demonstrated using data from DAISEX- 99 campaign at Barrax, Spain. Airborne data include POLDER and HyMap data in which various field plots were observed under varying viewing/illumination angles. Nearly simultaneously, a comprehensive field data set was acquired on specific crop plots. The inversions provided accurate LAI values, revealing the model potential to combine spectral and directional information to increase the likely accuracy of the retrievals. In addition, the sensitivity of retrievals with the angular and spectral subset of observations was analysed, showing a high consistency between results. This study has contributed to assess the uncertainties with products derived from satellite data like SEVIRI/MSG

    Canopy reflectance modeling in a tropical wooded grassland

    Get PDF
    Geometric/optical canopy reflectance modeling and spatial/spectral pattern recognition are used to study the form and structure of savanna in West Africa. An invertible plant canopy reflectance model is tested for its ability to estimate the amount of woody vegetation cover in areas of sparsely wooded grassland from remotely sensed data. Dry woodlands and wooded grasslands, commonly referred to as savannas, are important ecologically and economically in Africa, and cover approximately forty percent of the continent by some estimates. The Sahelian and Sudanian savanna make up the important and sensitive transition zone between the tropical forests and the arid Saharan region. The depletion of woody cover, used for fodder and fuel in these regions, has become a very severe problem for the people living there. LANDSAT Thematic Mapper (TM) data is used to stratify woodland and wooded grassland into areas of relatively homogeneous canopy cover, and then by applying an invertible forest canopy reflectance model to estimate directly the height and spacing of the trees in the stands. Since height and spacing are proportional to biomass in some cases, a successful application of the segmentation/modeling techniques will allow direct estimation of woody biomass, as well as cover density, over significant areas of these valuable and sensitive ecosystems. Sahelian savanna sites in the Gourma area of Mali being used by the NASA/GIMMS project (Global Inventory Modeling and Monitoring System, at Goddard Space Flight Center), in conjunction with CIPEA/Mali (Centre International pour l'Elevage en Afrique) will be used for testing the canopy model. The model will also be tested in a Sudanian zone crop/woodland area in the Region of Segou, Mali

    Canopy reflectance modeling in a tropical wooded grassland

    Get PDF
    Geometric/optical canopy reflectance modeling and spatial/spectral pattern recognition is used to study the form and structure of savanna in West Africa. An invertible plant canopy reflectance model is tested for its ability to estimate the amount of woody vegetation from remotely sensed data in areas of sparsely wooded grassland. Dry woodlands and wooded grasslands, commonly referred to as savannas, are important ecologically and economically in Africa, and cover approximately forty percent of the continent by some estimates. The Sahel and Sudan savannas make up the important and sensitive transition zone between the tropical forests and the arid Sahara region. The depletion of woody cover, used for fodder and fuel in these regions, has become a very severe problem for the people living there. LANDSAT Thematic Mapper (TM) data is used to stratify woodland and wooded grassland into areas of relatively homogeneous canopy cover, and then an invertible forest canopy reflectance model is applied to estimate directly the height and spacing of the trees in the stands. Because height and spacing are proportional to biomass in some cases, a successful application of the segmentation/modeling techniques will allow direct estimation of tree biomass, as well as cover density, over significant areas of these valuable and sensitive ecosystems. The model being tested in sites in two different bioclimatic zones in Mali, West Africa, will be used for testing the canopy model. Sudanian zone crop/woodland test sites were located in the Region of Segou, Mali

    Modeling topographic influences on solar radiation: A manual for the SOLARFLUX Model

    Full text link

    Remote sensing of snow : Factors influencing seasonal snow mapping in boreal forest region

    Get PDF
    Monitoring of snow cover in northern hemisphere is highly important for climate research and for operational activities, such as those related to hydrology and weather forecasting. The appearance and melting of seasonal snow cover dominate the hydrological and climatic patterns in the boreal and arctic regions. Spatial variability (in particular during the spring and autumn transition months) and long-term trends in global snow cover distribution are strongly interconnected to changes in Earth System (ES). Satellite data based estimates on snow cover extent are utilized e.g. in near-real-time hydrological forecasting, water resource management and to construct long-term Climate Data Records (CDRs) essential for climate research. Information on the quantitative reliability of snow cover monitoring is urgently needed by these different applications as the usefulness of satellite data based results is strongly dependent on the quality of the interpretation. This doctoral dissertation investigates the factors affecting the reliability of snow cover monitoring using optical satellite data and focuses on boreal regions (zone characterized by seasonal snow cover). Based on the analysis of different factors relevant to snow mapping performance, the work introduces a methodology to assess the uncertainty of snow cover extent estimates, focusing on the retrieval of fractional snow cover (within a pixel) during the spring melt period. The results demonstrate that optical remote sensing is well suited for determining snow extent in the melting season and that the characterizing the uncertainty in snow estimates facilitates the improvement of the snow mapping algorithms. The overall message is that using a versatile accuracy analysis it is possible to develop uncertainty estimates for the optical remote sensing of snow cover, which is a considerable advance in remote sensing. The results of this work can also be utilized in the development of other interpretation algorithms. This thesis consists of five articles predominantly dealing with quantitative data analysis, while the summary chapter synthesizes the results mainly in the algorithm accuracy point of view. The first four articles determine the reflectance characteristics essential for the forward and inverse modeling of boreal landscapes (forward model describes the observations as a function of the investigated variable). The effects of snow, snow-free ground and boreal forest canopy on the observed satellite scene reflectance are specified. The effects of all the error components are clarified in the fifth article and a novel experimental method to analyze and quantify the amount of uncertainty is presented. The five articles employ different remote sensing and ground truth data sets measured and/or analyzed for this research, covering the region of Finland and also applied to boreal forest region in northern Europe
    corecore