428 research outputs found

    Clearing the Clouds: Extracting 3D information from amongst the noise

    Get PDF
    Advancements permitting the rapid extraction of 3D point clouds from a variety of imaging modalities across the global landscape have provided a vast collection of high fidelity digital surface models. This has created a situation with unprecedented overabundance of 3D observations which greatly outstrips our current capacity to manage and infer actionable information. While years of research have removed some of the manual analysis burden for many tasks, human analysis is still a cornerstone of 3D scene exploitation. This is especially true for complex tasks which necessitate comprehension of scale, texture and contextual learning. In order to ameliorate the interpretation burden and enable scientific discovery from this volume of data, new processing paradigms are necessary to keep pace. With this context, this dissertation advances fundamental and applied research in 3D point cloud data pre-processing and deep learning from a variety of platforms. We show that the representation of 3D point data is often not ideal and sacrifices fidelity, context or scalability. First ground scanning terrestrial LIght Detection And Ranging (LiDAR) models are shown to have an inherent statistical bias, and present a state of the art method for correcting this, while preserving data fidelity and maintaining semantic structure. This technique is assessed in the dense canopy of Micronesia, with our technique being the best at retaining high levels of detail under extreme down-sampling (\u3c 1%). Airborne systems are then explored with a method which is presented to pre-process data to preserve a global contrast and semantic content in deep learners. This approach is validated with a building footprint detection task from airborne imagery captured in Eastern TN from the 3D Elevation Program (3DEP), our approach was found to achieve significant accuracy improvements over traditional techniques. Finally, topography data spanning the globe is used to assess past and previous global land cover change. Utilizing Shuttle Radar Topography Mission (SRTM) and Moderate Resolution Imaging Spectroradiometer (MODIS) data, paired with the airborne preprocessing technique described previously, a model for predicting land-cover change from topography observations is described. The culmination of these efforts have the potential to enhance the capabilities of automated 3D geospatial processing, substantially lightening the burden of analysts, with implications improving our responses to global security, disaster response, climate change, structural design and extraplanetary exploration

    Bayesian Variational Regularisation for Dark Matter Reconstruction with Uncertainty Quantification

    Get PDF
    Despite the great wealth of cosmological knowledge accumulated since the early 20th century, the nature of dark-matter, which accounts for ~85% of the matter content of the universe, remains illusive. Unfortunately, though dark-matter is scientifically interesting, with implications for our fundamental understanding of the Universe, it cannot be directly observed. Instead, dark-matter may be inferred from e.g. the optical distortion (lensing) of distant galaxies which, at linear order, manifests as a perturbation to the apparent magnitude (convergence) and ellipticity (shearing). Ensemble observations of the shear are collected and leveraged to construct estimates of the convergence, which can directly be related to the universal dark-matter distribution. Imminent stage IV surveys are forecast to accrue an unprecedented quantity of cosmological information; a discriminative partition of which is accessible through the convergence, and is disproportionately concentrated at high angular resolutions, where the echoes of cosmological evolution under gravity are most apparent. Capitalising on advances in probability concentration theory, this thesis merges the paradigms of Bayesian inference and optimisation to develop hybrid convergence inference techniques which are scalable, statistically principled, and operate over the Euclidean plane, celestial sphere, and 3-dimensional ball. Such techniques can quantify the plausibility of inferences at one-millionth the computational overhead of competing sampling methods. These Bayesian techniques are applied to the hotly debated Abell-520 merging cluster, concluding that observational catalogues contain insufficient information to determine the existence of dark-matter self-interactions. Further, these techniques were applied to all public lensing catalogues, recovering the then largest global dark-matter mass-map. The primary methodological contributions of this thesis depend only on posterior log-concavity, paving the way towards a, potentially revolutionary, complete hybridisation with artificial intelligence techniques. These next-generation techniques are the first to operate over the full 3-dimensional ball, laying the foundations for statistically principled universal dark-matter cartography, and the cosmological insights such advances may provide

    Micro-, Meso- and Macro-Connectomics of the Brain

    Get PDF
    Neurosciences, Neurolog

    An integrated study of earth resources in the State of California using remote sensing techniques

    Get PDF
    The author has identified the following significant results. The supply, demand, and impact relationships of California's water resources as exemplified by the Feather River project and other aspects of the California Water Plan are discussed
    corecore