35,896 research outputs found

    Drip and Mate Operations Acting in Test Tube Systems and Tissue-like P systems

    Full text link
    The operations drip and mate considered in (mem)brane computing resemble the operations cut and recombination well known from DNA computing. We here consider sets of vesicles with multisets of objects on their outside membrane interacting by drip and mate in two different setups: in test tube systems, the vesicles may pass from one tube to another one provided they fulfill specific constraints; in tissue-like P systems, the vesicles are immediately passed to specified cells after having undergone a drip or mate operation. In both variants, computational completeness can be obtained, yet with different constraints for the drip and mate operations

    Modeling and Estimation for Real-Time Microarrays

    Get PDF
    Microarrays are used for collecting information about a large number of different genomic particles simultaneously. Conventional fluorescent-based microarrays acquire data after the hybridization phase. During this phase, the target analytes (e.g., DNA fragments) bind to the capturing probes on the array and, by the end of it, supposedly reach a steady state. Therefore, conventional microarrays attempt to detect and quantify the targets with a single data point taken in the steady state. On the other hand, a novel technique, the so-called real-time microarray, capable of recording the kinetics of hybridization in fluorescent-based microarrays has recently been proposed. The richness of the information obtained therein promises higher signal-to-noise ratio, smaller estimation error, and broader assay detection dynamic range compared to conventional microarrays. In this paper, we study the signal processing aspects of the real-time microarray system design. In particular, we develop a probabilistic model for real-time microarrays and describe a procedure for the estimation of target amounts therein. Moreover, leveraging on system identification ideas, we propose a novel technique for the elimination of cross hybridization. These are important steps toward developing optimal detection algorithms for real-time microarrays, and to understanding their fundamental limitations

    A Pseudo DNA Cryptography Method

    Full text link
    The DNA cryptography is a new and very promising direction in cryptography research. DNA can be used in cryptography for storing and transmitting the information, as well as for computation. Although in its primitive stage, DNA cryptography is shown to be very effective. Currently, several DNA computing algorithms are proposed for quite some cryptography, cryptanalysis and steganography problems, and they are very powerful in these areas. However, the use of the DNA as a means of cryptography has high tech lab requirements and computational limitations, as well as the labor intensive extrapolation means so far. These make the efficient use of DNA cryptography difficult in the security world now. Therefore, more theoretical analysis should be performed before its real applications. In this project, We do not intended to utilize real DNA to perform the cryptography process; rather, We will introduce a new cryptography method based on central dogma of molecular biology. Since this method simulates some critical processes in central dogma, it is a pseudo DNA cryptography method. The theoretical analysis and experiments show this method to be efficient in computation, storage and transmission; and it is very powerful against certain attacks. Thus, this method can be of many uses in cryptography, such as an enhancement insecurity and speed to the other cryptography methods. There are also extensions and variations to this method, which have enhanced security, effectiveness and applicability.Comment: A small work that quite some people asked abou

    Nanoinformatics: developing new computing applications for nanomedicine

    Get PDF
    Nanoinformatics has recently emerged to address the need of computing applications at the nano level. In this regard, the authors have participated in various initiatives to identify its concepts, foundations and challenges. While nanomaterials open up the possibility for developing new devices in many industrial and scientific areas, they also offer breakthrough perspectives for the prevention, diagnosis and treatment of diseases. In this paper, we analyze the different aspects of nanoinformatics and suggest five research topics to help catalyze new research and development in the area, particularly focused on nanomedicine. We also encompass the use of informatics to further the biological and clinical applications of basic research in nanoscience and nanotechnology, and the related concept of an extended ?nanotype? to coalesce information related to nanoparticles. We suggest how nanoinformatics could accelerate developments in nanomedicine, similarly to what happened with the Human Genome and other -omics projects, on issues like exchanging modeling and simulation methods and tools, linking toxicity information to clinical and personal databases or developing new approaches for scientific ontologies, among many others
    corecore