169,265 research outputs found

    Revisiting Color-Event based Tracking: A Unified Network, Dataset, and Metric

    Full text link
    Combining the Color and Event cameras (also called Dynamic Vision Sensors, DVS) for robust object tracking is a newly emerging research topic in recent years. Existing color-event tracking framework usually contains multiple scattered modules which may lead to low efficiency and high computational complexity, including feature extraction, fusion, matching, interactive learning, etc. In this paper, we propose a single-stage backbone network for Color-Event Unified Tracking (CEUTrack), which achieves the above functions simultaneously. Given the event points and RGB frames, we first transform the points into voxels and crop the template and search regions for both modalities, respectively. Then, these regions are projected into tokens and parallelly fed into the unified Transformer backbone network. The output features will be fed into a tracking head for target object localization. Our proposed CEUTrack is simple, effective, and efficient, which achieves over 75 FPS and new SOTA performance. To better validate the effectiveness of our model and address the data deficiency of this task, we also propose a generic and large-scale benchmark dataset for color-event tracking, termed COESOT, which contains 90 categories and 1354 video sequences. Additionally, a new evaluation metric named BOC is proposed in our evaluation toolkit to evaluate the prominence with respect to the baseline methods. We hope the newly proposed method, dataset, and evaluation metric provide a better platform for color-event-based tracking. The dataset, toolkit, and source code will be released on: \url{https://github.com/Event-AHU/COESOT}

    A rule dynamics approach to event detection in Twitter with its application to sports and politics

    Get PDF
    The increasing popularity of Twitter as social network tool for opinion expression as well as informa- tion retrieval has resulted in the need to derive computational means to detect and track relevant top- ics/events in the network. The application of topic detection and tracking methods to tweets enable users to extract newsworthy content from the vast and somehow chaotic Twitter stream. In this paper, we ap- ply our technique named Transaction-based Rule Change Mining to extract newsworthy hashtag keywords present in tweets from two different domains namely; sports (The English FA Cup 2012) and politics (US Presidential Elections 2012 and Super Tuesday 2012). Noting the peculiar nature of event dynamics in these two domains, we apply different time-windows and update rates to each of the datasets in order to study their impact on performance. The performance effectiveness results reveal that our approach is able to accurately detect and track newsworthy content. In addition, the results show that the adaptation of the time-window exhibits better performance especially on the sports dataset, which can be attributed to the usually shorter duration of football events

    An association rule dynamics and classification approach to event detection and tracking in Twitter.

    Get PDF
    Twitter is a microblogging application used for sending and retrieving instant on-line messages of not more than 140 characters. There has been a surge in Twitter activities since its launch in 2006 as well as steady increase in event detection research on Twitter data (tweets) in recent years. With 284 million monthly active users Twitter has continued to grow both in size and activity. The network is rapidly changing the way global audience source for information and influence the process of journalism [Newman, 2009]. Twitter is now perceived as an information network in addition to being a social network. This explains why traditional news media follow activities on Twitter to enhance their news reports and news updates. Knowing the significance of the network as an information dissemination platform, news media subscribe to Twitter accounts where they post their news headlines and include the link to their on-line news where the full story may be found. Twitter users in some cases, post breaking news on the network before such news are published by traditional news media. This can be ascribed to Twitter subscribers' nearness to location of events. The use of Twitter as a network for information dissemination as well as for opinion expression by different entities is now common. This has also brought with it the issue of computational challenges of extracting newsworthy contents from Twitter noisy data. Considering the enormous volume of data Twitter generates, users append the hashtag (#) symbol as prefix to keywords in tweets. Hashtag labels describe the content of tweets. The use of hashtags also makes it easy to search for and read tweets of interest. The volume of Twitter streaming data makes it imperative to derive Topic Detection and Tracking methods to extract newsworthy topics from tweets. Since hashtags describe and enhance the readability of tweets, this research is developed to show how the appropriate use of hashtags keywords in tweets can demonstrate temporal evolvements of related topic in real-life and consequently enhance Topic Detection and Tracking on Twitter network. We chose to apply our method on Twitter network because of the restricted number of characters per message and for being a network that allows sharing data publicly. More importantly, our choice was based on the fact that hashtags are an inherent component of Twitter. To this end, the aim of this research is to develop, implement and validate a new approach that extracts newsworthy topics from tweets' hashtags of real-life topics over a specified period using Association Rule Mining. We termed our novel methodology Transaction-based Rule Change Mining (TRCM). TRCM is a system built on top of the Apriori method of Association Rule Mining to extract patterns of Association Rules changes in tweets hashtag keywords at different periods of time and to map the extracted keywords to related real-life topic or scenario. To the best of our knowledge, the adoption of dynamics of Association Rules of hashtag co-occurrences has not been explored as a Topic Detection and Tracking method on Twitter. The application of Apriori to hashtags present in tweets at two consecutive period t and t + 1 produces two association rulesets, which represents rules evolvement in the context of this research. A change in rules is discovered by matching every rule in ruleset at time t with those in ruleset at time t + 1. The changes are grouped under four identified rules namely 'New' rules, 'Unexpected Consequent' and 'Unexpected Conditional' rules, 'Emerging' rules and 'Dead' rules. The four rules represent different levels of topic real-life evolvements. For example, the emerging rule represents very important occurrence such as breaking news, while unexpected rules represents unexpected twist of event in an on-going topic. The new rule represents dissimilarity in rules in rulesets at time t and t+1. Finally, the dead rule represents topic that is no longer present on the Twitter network. TRCM revealed the dynamics of Association Rules present in tweets and demonstrates the linkage between the different types of rule dynamics to targeted real-life topics/events. In this research, we conducted experimental studies on tweets from different domains such as sports and politics to test the performance effectiveness of our method. We validated our method, TRCM with carefully chosen ground truth. The outcome of our research experiments include: Identification of 4 rule dynamics in tweets' hashtags namely: New rules, Emerging rules, Unexpected rules and 'Dead' rules using Association Rule Mining. These rules signify how news and events evolved in real-life scenario. Identification of rule evolvements on Twitter network using Rule Trend Analysis and Rule Trace. Detection and tracking of topic evolvements on Twitter using Transaction-based Rule Change Mining TRCM. Identification of how the peculiar features of each TRCM rules affect their performance effectiveness on real datasets

    Event detection, tracking, and visualization in Twitter: a mention-anomaly-based approach

    Full text link
    The ever-growing number of people using Twitter makes it a valuable source of timely information. However, detecting events in Twitter is a difficult task, because tweets that report interesting events are overwhelmed by a large volume of tweets on unrelated topics. Existing methods focus on the textual content of tweets and ignore the social aspect of Twitter. In this paper we propose MABED (i.e. mention-anomaly-based event detection), a novel statistical method that relies solely on tweets and leverages the creation frequency of dynamic links (i.e. mentions) that users insert in tweets to detect significant events and estimate the magnitude of their impact over the crowd. MABED also differs from the literature in that it dynamically estimates the period of time during which each event is discussed, rather than assuming a predefined fixed duration for all events. The experiments we conducted on both English and French Twitter data show that the mention-anomaly-based approach leads to more accurate event detection and improved robustness in presence of noisy Twitter content. Qualitatively speaking, we find that MABED helps with the interpretation of detected events by providing clear textual descriptions and precise temporal descriptions. We also show how MABED can help understanding users' interest. Furthermore, we describe three visualizations designed to favor an efficient exploration of the detected events.Comment: 17 page

    An objective based classification of aggregation techniques for wireless sensor networks

    No full text
    Wireless Sensor Networks have gained immense popularity in recent years due to their ever increasing capabilities and wide range of critical applications. A huge body of research efforts has been dedicated to find ways to utilize limited resources of these sensor nodes in an efficient manner. One of the common ways to minimize energy consumption has been aggregation of input data. We note that every aggregation technique has an improvement objective to achieve with respect to the output it produces. Each technique is designed to achieve some target e.g. reduce data size, minimize transmission energy, enhance accuracy etc. This paper presents a comprehensive survey of aggregation techniques that can be used in distributed manner to improve lifetime and energy conservation of wireless sensor networks. Main contribution of this work is proposal of a novel classification of such techniques based on the type of improvement they offer when applied to WSNs. Due to the existence of a myriad of definitions of aggregation, we first review the meaning of term aggregation that can be applied to WSN. The concept is then associated with the proposed classes. Each class of techniques is divided into a number of subclasses and a brief literature review of related work in WSN for each of these is also presented

    Event detection and user interest discovering in social media data streams

    Get PDF
    Social media plays an increasingly important role in people’s life. Microblogging is a form of social media which allows people to share and disseminate real-life events. Broadcasting events in microblogging networks can be an effective method of creating awareness, divulging important information and so on. However, many existing approaches at dissecting the information content primarily discuss the event detection model and ignore the user interest which can be discovered during event evolution. This leads to difficulty in tracking the most important events as they evolve including identifying the influential spreaders. There is further complication given that the influential spreaders interests will also change during event evolution. The influential spreaders play a key role in event evolution and this has been largely ignored in traditional event detection methods. To this end, we propose a user-interest model based event evolution model, named the HEE (Hot Event Evolution) model. This model not only considers the user interest distribution, but also uses the short text data in the social network to model the posts and the recommend methods to discovering the user interests. This can resolve the problem of data sparsity, as exemplified by many existing event detection methods, and improve the accuracy of event detection. A hot event automatic filtering algorithm is initially applied to remove the influence of general events, improving the quality and efficiency of mining the event. Then an automatic topic clustering algorithm is applied to arrange the short texts into clusters with similar topics. An improved user-interest model is proposed to combine the short texts of each cluster into a long text document simplifying the determination of the overall topic in relation to the interest distribution of each user during the evolution of important events. Finally a novel cosine measure based event similarity detection method is used to assess correlation between events thereby detecting the process of event evolution. The experimental results on a real Twitter dataset demonstrate the efficiency and accuracy of our proposed model for both event detection and user interest discovery during the evolution of hot events.N/
    corecore