7,351 research outputs found

    A survey of machine learning techniques applied to self organizing cellular networks

    Get PDF
    In this paper, a survey of the literature of the past fifteen years involving Machine Learning (ML) algorithms applied to self organizing cellular networks is performed. In order for future networks to overcome the current limitations and address the issues of current cellular systems, it is clear that more intelligence needs to be deployed, so that a fully autonomous and flexible network can be enabled. This paper focuses on the learning perspective of Self Organizing Networks (SON) solutions and provides, not only an overview of the most common ML techniques encountered in cellular networks, but also manages to classify each paper in terms of its learning solution, while also giving some examples. The authors also classify each paper in terms of its self-organizing use-case and discuss how each proposed solution performed. In addition, a comparison between the most commonly found ML algorithms in terms of certain SON metrics is performed and general guidelines on when to choose each ML algorithm for each SON function are proposed. Lastly, this work also provides future research directions and new paradigms that the use of more robust and intelligent algorithms, together with data gathered by operators, can bring to the cellular networks domain and fully enable the concept of SON in the near future

    A Very Brief Introduction to Machine Learning With Applications to Communication Systems

    Get PDF
    Given the unprecedented availability of data and computing resources, there is widespread renewed interest in applying data-driven machine learning methods to problems for which the development of conventional engineering solutions is challenged by modelling or algorithmic deficiencies. This tutorial-style paper starts by addressing the questions of why and when such techniques can be useful. It then provides a high-level introduction to the basics of supervised and unsupervised learning. For both supervised and unsupervised learning, exemplifying applications to communication networks are discussed by distinguishing tasks carried out at the edge and at the cloud segments of the network at different layers of the protocol stack

    Large-scale Spatial Distribution Identification of Base Stations in Cellular Networks

    Full text link
    The performance of cellular system significantly depends on its network topology, where the spatial deployment of base stations (BSs) plays a key role in the downlink scenario. Moreover, cellular networks are undergoing a heterogeneous evolution, which introduces unplanned deployment of smaller BSs, thus complicating the performance evaluation even further. In this paper, based on large amount of real BS locations data, we present a comprehensive analysis on the spatial modeling of cellular network structure. Unlike the related works, we divide the BSs into different subsets according to geographical factor (e.g. urban or rural) and functional type (e.g. macrocells or microcells), and perform detailed spatial analysis to each subset. After examining the accuracy of Poisson point process (PPP) in BS locations modeling, we take into account the Gibbs point processes as well as Neyman-Scott point processes and compare their accuracy in view of large-scale modeling test. Finally, we declare the inaccuracy of the PPP model, and reveal the general clustering nature of BSs deployment, which distinctly violates the traditional assumption. This paper carries out a first large-scale identification regarding available literatures, and provides more realistic and more general results to contribute to the performance analysis for the forthcoming heterogeneous cellular networks

    A survey of online data-driven proactive 5G network optimisation using machine learning

    Get PDF
    In the fifth-generation (5G) mobile networks, proactive network optimisation plays an important role in meeting the exponential traffic growth, more stringent service requirements, and to reduce capitaland operational expenditure. Proactive network optimisation is widely acknowledged as on e of the most promising ways to transform the 5G network based on big data analysis and cloud-fog-edge computing, but there are many challenges. Proactive algorithms will require accurate forecasting of highly contextualised traffic demand and quantifying the uncertainty to drive decision making with performance guarantees. Context in Cyber-Physical-Social Systems (CPSS) is often challenging to uncover, unfolds over time, and even more difficult to quantify and integrate into decision making. The first part of the review focuses on mining and inferring CPSS context from heterogeneous data sources, such as online user-generated-content. It will examine the state-of-the-art methods currently employed to infer location, social behaviour, and traffic demand through a cloud-edge computing framework; combining them to form the input to proactive algorithms. The second part of the review focuses on exploiting and integrating the demand knowledge for a range of proactive optimisation techniques, including the key aspects of load balancing, mobile edge caching, and interference management. In both parts, appropriate state-of-the-art machine learning techniques (including probabilistic uncertainty cascades in proactive optimisation), complexity-performance trade-offs, and demonstrative examples are presented to inspire readers. This survey couples the potential of online big data analytics, cloud-edge computing, statistical machine learning, and proactive network optimisation in a common cross-layer wireless framework. The wider impact of this survey includes better cross-fertilising the academic fields of data analytics, mobile edge computing, AI, CPSS, and wireless communications, as well as informing the industry of the promising potentials in this area
    • …
    corecore