85 research outputs found

    Chemical probes of surface layer biogenesis in Clostridium difficile

    Get PDF
    The bacterium Clostridium difficile is responsible for recent epidemics of gastroenteritis and currently causes over twice as many deaths per year as the other major hospital ‘superbug’, MRSA. Since the bacterium is resistant to conventional antibiotics there is an urgent need to develop novel therapies. C. difficile secretes a family of proteins that are held in place on the cell wall by non-covalent forces, producing a proteinaceous coat (the surface layer or S-layer) that surrounds the entire cell. These S-layer proteins (SLPs) are immunogenic in humans and play a role in binding to host cells. Synthesis of the C. difficile S-layer involves site-specific proteolytic cleavage of the SlpA precursor by an as yet unidentified C. difficile protease. Identification of the protease that processes SlpA has proven challenging, due in part to a lack of established genetic tools in C. difficle. Here the development of novel chemical probes that can disrupt S-layer formation by inhibiting the protease are described, and found to be powerful chemical proteomic tools for both protease identification and exploring the process of S-layer formation. Screening and inhibition experiments were first performed to identify novel synthetic irreversible protease inhibitors combining an electrophilic warhead with a specific sequence element matching the SlpA cleavage. These compound series were shown to possess structure-dependent activity, and inhibited cultures were also more sensitive to lysozyme-induced cell lysis, suggesting that correct processing and assembly of the S-layer is important for cell envelope integrity. Optimised inhibitors were further developed into ‘activity-based probes’ (ABPs) carrying an affinity tag, and were successfully used to isolate and identify de novo the key protease involved in cleavage of SlpA, Cwp84, using a combination of different labelling and proteomics approaches. These probes also permitted identification of Cwp84 activity across a wide range of clinical strains. In later work, the scope of the warhead element was explored in more detail, and the potential antibacterial effects of the inhibitors were investigated in both wild type and genetically engineered strains. Finally, the contributions of this work in terms of both chemical technology and C. difficile biology are critically assessed

    Carotid artery contrast enhanced ultrasound

    Get PDF

    Electron Thermal Runaway in Atmospheric Electrified Gases: a microscopic approach

    Get PDF
    Thesis elaborated from 2018 to 2023 at the Instituto de Astrofísica de Andalucía under the supervision of Alejandro Luque (Granada, Spain) and Nikolai Lehtinen (Bergen, Norway). This thesis presents a new database of atmospheric electron-molecule collision cross sections which was published separately under the DOI : With this new database and a new super-electron management algorithm which significantly enhances high-energy electron statistics at previously unresolved ratios, the thesis explores general facets of the electron thermal runaway process relevant to atmospheric discharges under various conditions of the temperature and gas composition as can be encountered in the wake and formation of discharge channels
    • …
    corecore