8,169 research outputs found

    Ultra-fast self-assembly and stabilization of reactive nanoparticles in reduced graphene oxide films.

    Get PDF
    Nanoparticles hosted in conductive matrices are ubiquitous in electrochemical energy storage, catalysis and energetic devices. However, agglomeration and surface oxidation remain as two major challenges towards their ultimate utility, especially for highly reactive materials. Here we report uniformly distributed nanoparticles with diameters around 10 nm can be self-assembled within a reduced graphene oxide matrix in 10 ms. Microsized particles in reduced graphene oxide are Joule heated to high temperature (∼1,700 K) and rapidly quenched to preserve the resultant nano-architecture. A possible formation mechanism is that microsized particles melt under high temperature, are separated by defects in reduced graphene oxide and self-assemble into nanoparticles on cooling. The ultra-fast manufacturing approach can be applied to a wide range of materials, including aluminium, silicon, tin and so on. One unique application of this technique is the stabilization of aluminium nanoparticles in reduced graphene oxide film, which we demonstrate to have excellent performance as a switchable energetic material

    Cracking in asphalt materials

    Get PDF
    This chapter provides a comprehensive review of both laboratory characterization and modelling of bulk material fracture in asphalt mixtures. For the purpose of organization, this chapter is divided into a section on laboratory tests and a section on models. The laboratory characterization section is further subdivided on the basis of predominant loading conditions (monotonic vs. cyclic). The section on constitutive models is subdivided into two sections, the first one containing fracture mechanics based models for crack initiation and propagation that do not include material degradation due to cyclic loading conditions. The second section discusses phenomenological models that have been developed for crack growth through the use of dissipated energy and damage accumulation concepts. These latter models have the capability to simulate degradation of material capacity upon exceeding a threshold number of loading cycles.Peer ReviewedPostprint (author's final draft

    Assessment of Electrical Shorting and Metal Vapor Arcing Potential of Tin Whiskers

    Get PDF
    Tin whiskers are conductive crystal growths that form unpredictively from tin and tin alloy surfaces. The growth of tin whiskers presents a reliability concern in electronic equipment due to their potential to create electrical shorts and metal vapor arcs. Concern with tin whiskers is increasing due to the ever tightening conductor spacing in smaller electronic products and the increased use of pure tin and lead-free tin alloys. While tin whiskers present a failure risk for electronics, a tin whisker mechanical bridging between two differently electrically biased conductors doesn't guaranteed electrical shorts due to surface films on tin whisker and conductors. The voltage must exceed a threshold level in order to produce the current flow through the tin whisker. However, the influence of contact force and presence of surface contaminations on breakdown voltage of tin whiskers has not been adequately investigated. Furthermore, whisker-induced electrical shorts can initiate destructive metal vapor arcs. The potential for metal vapor arc formation is affected by several factors, including whisker geometry, bias voltage and pressure. Previous studies demonstrated metal vapor arc formation using gold- and tin-wires; however, material and geometry differences between these test articles and actual tin whiskers have not been examined. Further, a practical guide for assessing the potential for tin whisker-induced metal vapor arc formation has not been provided. This dissertation provides characteristics and assessment of tin whisker-induced electrical shorts and metal vapor arcs. The breakdown voltage of tin whisker was measured using gold- and tin-coated probes to characterize the influence of two different contact materials on breakdown voltage. As a part of this effort, the effect of contact force on breakdown voltage and its current-voltage characteristics related with the failure mode and the possibility of electrical shorting by tin whiskers were also investigated. With regards to tin whisker-induced metal vapor arc formation, the effect of whisker geometry, bias voltage and pressure was investigated. Based on the experimental evidence, a metric defined as a function of bias voltage and resistance was proposed and the logistic regression model that can assess the likelihood of tin whisker-induced metal vapor arc formation was developed

    Ambient conditions prevailing during hail events in central Europe

    Get PDF
    Around 26 000 severe convective storm tracks between 2005 and 2014 have been estimated from 2D radar reflectivity for parts of Europe, including Germany, France, Belgium, and Luxembourg. This event set was further combined with eyewitness reports, environmental conditions, and synoptic-scale fronts based on the ERA-Interim (ECMWF Reanalysis) reanalysis. Our analyses reveal that on average about a quarter of all severe thunderstorms in the investigation area were associated with a front. Over complex terrains, such as in southern Germany, the proportion of frontal convective storms is around 10 %–15 %, while over flat terrain half of the events require a front to trigger convection. Frontal storm tracks associated with hail on average produce larger hailstones and have a longer track. These events usually develop in a high-shear environment. Using composites of environmental conditions centered around the hailstorm tracks, we found that dynamical proxies such as deep-layer shear or storm-relative helicity become important when separating hail diameters and, in particular, their lengths; 0–3 km helicity as a dynamical proxy performs better compared to wind shear for the separation. In contrast, thermodynamical proxies such as the lifted index or lapse rate show only small differences between the different intensity classes.ISSN:1561-8633ISSN:1684-998

    Characterization of damage evolution on metallic components using ultrasonic non-destructive methods

    Get PDF
    When fatigue is considered, it is expected that structures and machinery eventually fail. Still, when this damage is unexpected, besides of the negative economic impact that it produces, life of people could be potentially at risk. Thus, nowadays it is imperative that the infrastructure managers, ought to program regular inspection and maintenance for their assets; in addition, designers and materials manufacturers, can access to appropriate diagnostic tools in order to build superior and more reliable materials. In this regard, and for a number of applications, non-destructive evaluation techniques have proven to be an efficient and helpful alternative to traditional destructive assays of materials. Particularly, for the design area of materials, in recent times researchers have exploited the Acoustic Emission (AE) phenomenon as an additional assessing tool with which characterize the mechanical properties of specimens. Nevertheless, several challenges arise when treat said phenomenon, since its intensity, duration and arrival behavior is essentially stochastic for traditional signal processing means, leading to inaccuracies for the outcome assessment. In this dissertation, efforts are focused on assisting in the characterization of the mechanical properties of advanced high strength steels during under uniaxial tensile tests. Particularly of interest, is being able to detect the nucleation and growth of a crack throughout said test. Therefore, the resulting AE waves generated by the specimen during the test are assessed with the aim of characterize their evolution. For this, on the introduction, a brief review about non-destructive methods emphasizing the AE phenomenon is introduced. Next is presented, an exhaustive analysis with regard to the challenge and deficiencies of detecting and segmenting each AE event over a continuous data-stream with the traditional threshold detection method, and additionally, with current state of the art methods. Following, a novel AE event detection method is proposed, with the aim of overcome the aforementioned limitations. Evidence showed that the proposed method (which is based on the short-time features of the waveform of the AE signal), excels the detection capabilities of current state of the art methods, when onset and endtime precision, as well as when quality of detection and computational speed are also considered. Finally, a methodology aimed to analyze the frequency spectrum evolution of the AE phenomenon during the tensile test, is proposed. Results indicate that it is feasible to correlate nucleation and growth of a crack with the frequency content evolution of AE events.Cuando se considera la fatiga de los materiales, se espera que eventualmente las estructuras y las maquinarias fallen. Sin embargo, cuando este daño es inesperado, además del impacto económico que este produce, la vida de las personas podría estar potencialmente en riesgo. Por lo que hoy en día, es imperativo que los administradores de las infraestructuras deban programar evaluaciones y mantenimientos de manera regular para sus activos. De igual manera, los diseñadores y fabricantes de materiales deberían de poseer herramientas de diagnóstico apropiadas con el propósito de obtener mejores y más confiables materiales. En este sentido, y para un amplio número de aplicaciones, las técnicas de evaluación no destructivas han demostrado ser una útil y eficiente alternativa a los ensayos destructivos tradicionales de materiales. De manera particular, en el área de diseño de materiales, recientemente los investigadores han aprovechado el fenómeno de Emisión Acústica (EA) como una herramienta complementaria de evaluación, con la cual poder caracterizar las propiedades mecánicas de los especímenes. No obstante, una multitud de desafíos emergen al tratar dicho fenómeno, ya que el comportamiento de su intensidad, duración y aparición es esencialmente estocástico desde el punto de vista del procesado de señales tradicional, conllevando a resultados imprecisos de las evaluaciones. Esta disertación se enfoca en colaborar en la caracterización de las propiedades mecánicas de Aceros Avanzados de Alta Resistencia (AAAR), para ensayos de tracción de tensión uniaxiales, con énfasis particular en la detección de fatiga, esto es la nucleación y generación de grietas en dichos componentes metálicos. Para ello, las ondas mecánicas de EA que estos especímenes generan durante los ensayos, son estudiadas con el objetivo de caracterizar su evolución. En la introducción de este documento, se presenta una breve revisión acerca de los métodos existentes no destructivos con énfasis particular al fenómeno de EA. A continuación, se muestra un análisis exhaustivo respecto a los desafíos para la detección de eventos de EA y las y deficiencias del método tradicional de detección; de manera adicional se evalúa el desempeño de los métodos actuales de detección de EA pertenecientes al estado del arte. Después, con el objetivo de superar las limitaciones presentadas por el método tradicional, se propone un nuevo método de detección de actividad de EA; la evidencia demuestra que el método propuesto (basado en el análisis en tiempo corto de la forma de onda), supera las capacidades de detección de los métodos pertenecientes al estado del arte, cuando se evalúa la precisión de la detección de la llegada y conclusión de las ondas de EA; además de, cuando también se consideran la calidad de detección de eventos y la velocidad de cálculo. Finalmente, se propone una metodología con el propósito de evaluar la evolución de la energía del espectro frecuencial del fenómeno de EA durante un ensayo de tracción; los resultados demuestran que es posible correlacionar el contenido de dicha evolución frecuencial con respecto a la nucleación y crecimiento de grietas en AAAR's.Postprint (published version
    • …
    corecore