43,657 research outputs found

    Conditional Reliability in Uncertain Graphs

    Full text link
    Network reliability is a well-studied problem that requires to measure the probability that a target node is reachable from a source node in a probabilistic (or uncertain) graph, i.e., a graph where every edge is assigned a probability of existence. Many approaches and problem variants have been considered in the literature, all assuming that edge-existence probabilities are fixed. Nevertheless, in real-world graphs, edge probabilities typically depend on external conditions. In metabolic networks a protein can be converted into another protein with some probability depending on the presence of certain enzymes. In social influence networks the probability that a tweet of some user will be re-tweeted by her followers depends on whether the tweet contains specific hashtags. In transportation networks the probability that a network segment will work properly or not might depend on external conditions such as weather or time of the day. In this paper we overcome this limitation and focus on conditional reliability, that is assessing reliability when edge-existence probabilities depend on a set of conditions. In particular, we study the problem of determining the k conditions that maximize the reliability between two nodes. We deeply characterize our problem and show that, even employing polynomial-time reliability-estimation methods, it is NP-hard, does not admit any PTAS, and the underlying objective function is non-submodular. We then devise a practical method that targets both accuracy and efficiency. We also study natural generalizations of the problem with multiple source and target nodes. An extensive empirical evaluation on several large, real-life graphs demonstrates effectiveness and scalability of the proposed methods.Comment: 14 pages, 13 figure

    Integrating and Ranking Uncertain Scientific Data

    Get PDF
    Mediator-based data integration systems resolve exploratory queries by joining data elements across sources. In the presence of uncertainties, such multiple expansions can quickly lead to spurious connections and incorrect results. The BioRank project investigates formalisms for modeling uncertainty during scientific data integration and for ranking uncertain query results. Our motivating application is protein function prediction. In this paper we show that: (i) explicit modeling of uncertainties as probabilities increases our ability to predict less-known or previously unknown functions (though it does not improve predicting the well-known). This suggests that probabilistic uncertainty models offer utility for scientific knowledge discovery; (ii) small perturbations in the input probabilities tend to produce only minor changes in the quality of our result rankings. This suggests that our methods are robust against slight variations in the way uncertainties are transformed into probabilities; and (iii) several techniques allow us to evaluate our probabilistic rankings efficiently. This suggests that probabilistic query evaluation is not as hard for real-world problems as theory indicates

    Efficient Subgraph Similarity Search on Large Probabilistic Graph Databases

    Full text link
    Many studies have been conducted on seeking the efficient solution for subgraph similarity search over certain (deterministic) graphs due to its wide application in many fields, including bioinformatics, social network analysis, and Resource Description Framework (RDF) data management. All these works assume that the underlying data are certain. However, in reality, graphs are often noisy and uncertain due to various factors, such as errors in data extraction, inconsistencies in data integration, and privacy preserving purposes. Therefore, in this paper, we study subgraph similarity search on large probabilistic graph databases. Different from previous works assuming that edges in an uncertain graph are independent of each other, we study the uncertain graphs where edges' occurrences are correlated. We formally prove that subgraph similarity search over probabilistic graphs is #P-complete, thus, we employ a filter-and-verify framework to speed up the search. In the filtering phase,we develop tight lower and upper bounds of subgraph similarity probability based on a probabilistic matrix index, PMI. PMI is composed of discriminative subgraph features associated with tight lower and upper bounds of subgraph isomorphism probability. Based on PMI, we can sort out a large number of probabilistic graphs and maximize the pruning capability. During the verification phase, we develop an efficient sampling algorithm to validate the remaining candidates. The efficiency of our proposed solutions has been verified through extensive experiments.Comment: VLDB201

    Mining Maximal Cliques from an Uncertain Graph

    Get PDF
    We consider mining dense substructures (maximal cliques) from an uncertain graph, which is a probability distribution on a set of deterministic graphs. For parameter 0 < {\alpha} < 1, we present a precise definition of an {\alpha}-maximal clique in an uncertain graph. We present matching upper and lower bounds on the number of {\alpha}-maximal cliques possible within an uncertain graph. We present an algorithm to enumerate {\alpha}-maximal cliques in an uncertain graph whose worst-case runtime is near-optimal, and an experimental evaluation showing the practical utility of the algorithm.Comment: ICDE 201
    • …
    corecore