2,372 research outputs found

    Semantics and result disambiguation for keyword search on tree data

    Get PDF
    Keyword search is a popular technique for searching tree-structured data (e.g., XML, JSON) on the web because it frees the user from learning a complex query language and the structure of the data sources. However, the convenience of keyword search comes with drawbacks. The imprecision of the keyword queries usually results in a very large number of results of which only very few are relevant to the query. Multiple previous approaches have tried to address this problem. Some of them exploit structural and semantic properties of the tree data in order to filter out irrelevant results while others use a scoring function to rank the candidate results. These are not easy tasks though and in both cases, relevant results might be missed and the users might spend a significant amount of time searching for their intended result in a plethora of candidates. Another drawback of keyword search on tree data, also due to the incapacity of keyword queries to precisely express the user intent, is that the query answer may contain different types of meaningful results even though the user is interested in only some of them. Both problems of keyword search on tree data are addressed in this dissertation. First, an original approach for answering keyword queries is proposed. This approach extracts structural patterns of the query matches and reasons with them in order to return meaningful results ranked with respect to their relevance to the query. The proposed semantics performs comparisons between patterns of results by using different types of ho-momorphisms between the patterns. These comparisons are used to organize the patterns into a graph of patterns which is leveraged to determine ranking and filtering semantics. The experimental results show that the approach produces query results of higher quality compared to the previous ones. To address the second problem, an original approach for clustering the keyword search results on tree data is introduced. The clustered output allows the user to focus on a subset of the results, and to save time and effort while looking for the relevant results. The approach performs clustering at different levels of granularity to group similar results together effectively. The similarity of the results and result clusters is decided using relations on structural patterns of the results defined based on homomor-phisms between path patterns. An originality of the clustering approach is that the clusters are ranked at different levels of granularity to quickly guide the user to the relevant result patterns. An efficient stack-based algorithm is presented for generating result patterns and constructing the clustering hierarchy. The extensive experimentation with multiple real datasets show that the algorithm is fast and scalable. It also shows that the clustering methodology allows the users to effectively retrieve their intended results, and outperforms a recent state-of-the-art clustering approach. In order to tackle the second problem from a different aspect, diversifying the results of keyword search is addressed. Diversification aims to provide the users with a ranked list of results which balances the relevance and redundancy of the results. Measures for quantifying the relevance and dissimilarity of result patterns are presented and a heuristic for generating a diverse set of results using these metrics is introduced

    Learning To Scale Up Search-Driven Data Integration

    Get PDF
    A recent movement to tackle the long-standing data integration problem is a compositional and iterative approach, termed “pay-as-you-go” data integration. Under this model, the objective is to immediately support queries over “partly integrated” data, and to enable the user community to drive integration of the data that relate to their actual information needs. Over time, data will be gradually integrated. While the pay-as-you-go vision has been well-articulated for some time, only recently have we begun to understand how it can be manifested into a system implementation. One branch of this effort has focused on enabling queries through keyword search-driven data integration, in which users pose queries over partly integrated data encoded as a graph, receive ranked answers generated from data and metadata that is linked at query-time, and provide feedback on those answers. From this user feedback, the system learns to repair bad schema matches or record links. Many real world issues of uncertainty and diversity in search-driven integration remain open. Such tasks in search-driven integration require a combination of human guidance and machine learning. The challenge is how to make maximal use of limited human input. This thesis develops three methods to scale up search-driven integration, through learning from expert feedback: (1) active learning techniques to repair links from small amounts of user feedback; (2) collaborative learning techniques to combine users’ conflicting feedback; and (3) debugging techniques to identify where data experts could best improve integration quality. We implement these methods within the Q System, a prototype of search-driven integration, and validate their effectiveness over real-world datasets
    corecore