218 research outputs found

    Framework for botnet emulation and analysis

    Get PDF
    Criminals use the anonymity and pervasiveness of the Internet to commit fraud, extortion, and theft. Botnets are used as the primary tool for this criminal activity. Botnets allow criminals to accumulate and covertly control multiple Internet-connected computers. They use this network of controlled computers to flood networks with traffic from multiple sources, send spam, spread infection, spy on users, commit click fraud, run adware, and host phishing sites. This presents serious privacy risks and financial burdens to businesses and individuals. Furthermore, all indicators show that the problem is worsening because the research and development cycle of the criminal industry is faster than that of security research. To enable researchers to measure botnet connection models and counter-measures, a flexible, rapidly augmentable framework for creating test botnets is provided. This botnet framework, written in the Ruby language, enables researchers to run a botnet on a closed network and to rapidly implement new communication, spreading, control, and attack mechanisms for study. This is a significant improvement over augmenting C++ code-bases for the most popular botnets, Agobot and SDBot. Rubot allows researchers to implement new threats and their corresponding defenses before the criminal industry can. The Rubot experiment framework includes models for some of the latest trends in botnet operation such as peer-to-peer based control, fast-flux DNS, and periodic updates. Our approach implements the key network features from existing botnets and provides the required infrastructure to run the botnet in a closed environment.Ph.D.Committee Chair: Copeland, John; Committee Member: Durgin, Gregory; Committee Member: Goodman, Seymour; Committee Member: Owen, Henry; Committee Member: Riley, Georg

    Isolated virtualised clusters: testbeds for high-risk security experimentation and training

    Get PDF
    International audienceAdequate testbeds for conducting security experiments and test under controlled, safe, repeatable and asrealistic- as-possible conditions, are a key element for the research and development of adequate security solutions and the training of security personnel and researchers. In this paper, we report on the construction and operations of isolated virtualised testbeds used in two separate security research labs in Canada and France, as part of a joint collaborative effort. The main idea was to use mid- to large-scale isolated computing clusters to obtain high levels of scale, manageability and safety by heavily leveraging virtualisation technology, open-source cluster management tools and a network architecture separating experiment and control traffic. Both facilities have been used for conducting different types of security research experiments, including in-lab reconstructions of botnets, denial-of-service attacks, and virus detection experimentation. They have also been used for teaching and training students in experimental security methods. We describe these facilities and the criteria that we used to design them, the research and training activities that were conducted, and close by discussing the lessons learned and the pros and cons of this approach

    A Review of Testbeds on SCADA Systems with Malware Analysis

    Get PDF
    Supervisory control and data acquisition (SCADA) systems are among the major types of Industrial Control Systems (ICS) and are responsible for monitoring and controlling essential infrastructures such as power generation, water treatment, and transportation. Very common and with high added-value, these systems have malware as one of their main threats, and due to their characteristics, it is practically impossible to test the security of a system without compromising it, requiring simulated test platforms to verify their cyber resilience. This review will discuss the most recent studies on ICS testbeds with a focus on cybersecurity and malware impact analysis

    MICRO-CI: A Testbed for Cyber-Security Research

    Get PDF
    A significant challenge for governments around the globe is the need to improve the level of awareness for citizens and businesses about the threats that exist in cyberspace. The arrival of new information technologies has resulted in different types of criminal activities, which previously did not exist, with the potential to cause extensive damage. Given the fact that the Internet is boundary-less, it makes it difficult to identify where attacks originate from and how to counter them. The only solution is to improve the level of support for security systems and evolve the defences against cyber-attacks. This project supports the development of critical infrastructure security research, in the fight against a growing threat from the digital domain. However, the real-world evaluation of emerging security systems for Supervisory Control and Data Acquisition (SCADA) systems is impractical. The research project furthers the knowledge and understanding of Information Systems; specifically acting as a facilitator for cyber-security research. In this paper, the construction of a testbed and datasets for cyber-security and critical infrastructure research are presented

    Developing Systems for Cyber Situational Awareness

    Get PDF
    In both military and commercial settings, the awareness of Cyber attacks and the effect of those attacks on the mission space of an organization has become a targeted information goal for leaders and commanders at all levels. We present in this paper a defining framework to understand situational awareness (SA)—especially as it pertains to the Cyber domain—and propose a methodology for populating the cognitive domain model for this realm based on adversarial knowledge involved with Cyber attacks. We conclude with considerations for developing Cyber SA systems of the future

    Agent organization in the KP

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2008.Includes bibliographical references (p. 181-191).In designing and building a network like the Internet, we continue to face the problems of scale and distribution. With the dramatic expansion in scale and heterogeneity of the Internet, network management has become an increasingly difficult task. Furthermore, network applications often need to maintain efficient organization among the participants by collecting information from the underlying networks. Such individual information collection activities lead to duplicate efforts and contention for network resources. The Knowledge Plane (KP) is a new common construct that provides knowledge and expertise to meet the functional, policy and scaling requirements of network management, as well as to create synergy and exploit commonality among many network applications. To achieve these goals, we face many challenging problems, including widely distributed data collection, efficient processing of that data, wide availability of the expertise, etc. In this thesis, to provide better support for network management and large-scale network applications, I propose a knowledge plane architecture that consists of a network knowledge plane (NetKP) at the network layer, and on top of it, multiple specialized KPs (spec-KPs). The NetKP organizes agents to provide valuable knowledge and facilities about the Internet to the spec-KPs. Each spec-KP is specialized in its own area of interest. In both the NetKP and the spec-KPs, agents are organized into regions based on different sets of constraints. I focus on two key design issues in the NetKP: (1) a region-based architecture for agent organization, in which I design an efficient and non-intrusive organization among regions that combines network topology and a distributed hash table; (2) request and knowledge dissemination, in which I design a robust and efficient broadcast and aggregation mechanism using a tree structure among regions.(cont.) In the spec-KPs, I build two examples: experiment management on the PlanetLab testbed and distributed intrusion detection on the DETER testbed. The experiment results suggest a common approach driven by the design principles of the Internet and more specialized constraints can derive productive organization for network management and applications.by Ji Li.Ph.D

    Modelling and Design of Resilient Networks under Challenges

    Get PDF
    Communication networks, in particular the Internet, face a variety of challenges that can disrupt our daily lives resulting in the loss of human lives and significant financial costs in the worst cases. We define challenges as external events that trigger faults that eventually result in service failures. Understanding these challenges accordingly is essential for improvement of the current networks and for designing Future Internet architectures. This dissertation presents a taxonomy of challenges that can help evaluate design choices for the current and Future Internet. Graph models to analyse critical infrastructures are examined and a multilevel graph model is developed to study interdependencies between different networks. Furthermore, graph-theoretic heuristic optimisation algorithms are developed. These heuristic algorithms add links to increase the resilience of networks in the least costly manner and they are computationally less expensive than an exhaustive search algorithm. The performance of networks under random failures, targeted attacks, and correlated area-based challenges are evaluated by the challenge simulation module that we developed. The GpENI Future Internet testbed is used to conduct experiments to evaluate the performance of the heuristic algorithms developed
    • …
    corecore