689,684 research outputs found

    full-FORCE: A Target-Based Method for Training Recurrent Networks

    Get PDF
    Trained recurrent networks are powerful tools for modeling dynamic neural computations. We present a target-based method for modifying the full connectivity matrix of a recurrent network to train it to perform tasks involving temporally complex input/output transformations. The method introduces a second network during training to provide suitable "target" dynamics useful for performing the task. Because it exploits the full recurrent connectivity, the method produces networks that perform tasks with fewer neurons and greater noise robustness than traditional least-squares (FORCE) approaches. In addition, we show how introducing additional input signals into the target-generating network, which act as task hints, greatly extends the range of tasks that can be learned and provides control over the complexity and nature of the dynamics of the trained, task-performing network.Comment: 20 pages, 8 figure

    A Tight Lower Bound on the Controllability of Networks with Multiple Leaders

    Get PDF
    In this paper we study the controllability of networked systems with static network topologies using tools from algebraic graph theory. Each agent in the network acts in a decentralized fashion by updating its state in accordance with a nearest-neighbor averaging rule, known as the consensus dynamics. In order to control the system, external control inputs are injected into the so called leader nodes, and the influence is propagated throughout the network. Our main result is a tight topological lower bound on the rank of the controllability matrix for such systems with arbitrary network topologies and possibly multiple leaders

    Modeling micro-macro pedestrian counterflow in heterogeneous domains

    Get PDF
    We present a micro-macro strategy able to describe the dynamics of crowds in heterogeneous media. Herein we focus on the example of pedestrian counterflow. The main working tools include the use of mass and porosity measures together with their transport as well as suitable application of a version of Radon-Nikodym Theorem formulated for finite measures. Finally, we illustrate numerically our microscopic model and emphasize the effects produced by an implicitly defined social velocity. Keywords: Crowd dynamics; mass measures; porosity measure; social network
    corecore